|
| 1 | +/// ## maximum subarray via Dynamic Programming |
| 2 | +
|
| 3 | +/// maximum_subarray(array) find the subarray (containing at least one number) which has the largest sum |
| 4 | +/// and return its sum. |
| 5 | +/// |
| 6 | +/// A subarray is a contiguous part of an array. |
| 7 | +/// |
| 8 | +/// Arguments: |
| 9 | +/// * `array` - an integer array |
| 10 | +/// Complexity |
| 11 | +/// - time complexity: O(array.length), |
| 12 | +/// - space complexity: O(array.length), |
| 13 | +pub fn maximum_subarray(array: &[i32]) -> i32 { |
| 14 | + let mut dp = vec![0; array.len()]; |
| 15 | + dp[0] = array[0]; |
| 16 | + let mut result = dp[0]; |
| 17 | + |
| 18 | + for i in 1..array.len() { |
| 19 | + if dp[i - 1] > 0 { |
| 20 | + dp[i] = dp[i - 1] + array[i]; |
| 21 | + } else { |
| 22 | + dp[i] = array[i]; |
| 23 | + } |
| 24 | + result = result.max(dp[i]); |
| 25 | + } |
| 26 | + |
| 27 | + result |
| 28 | +} |
| 29 | + |
| 30 | +#[cfg(test)] |
| 31 | +mod tests { |
| 32 | + use super::*; |
| 33 | + |
| 34 | + #[test] |
| 35 | + fn non_negative() { |
| 36 | + //the maximum value: 1 + 0 + 5 + 8 = 14 |
| 37 | + let array = vec![1, 0, 5, 8]; |
| 38 | + assert_eq!(maximum_subarray(&array), 14); |
| 39 | + } |
| 40 | + |
| 41 | + #[test] |
| 42 | + fn negative() { |
| 43 | + //the maximum value: -1 |
| 44 | + let array = vec![-3, -1, -8, -2]; |
| 45 | + assert_eq!(maximum_subarray(&array), -1); |
| 46 | + } |
| 47 | + |
| 48 | + #[test] |
| 49 | + fn normal() { |
| 50 | + //the maximum value: 3 + (-2) + 5 = 6 |
| 51 | + let array = vec![-4, 3, -2, 5, -8]; |
| 52 | + assert_eq!(maximum_subarray(&array), 6); |
| 53 | + } |
| 54 | + |
| 55 | + #[test] |
| 56 | + fn single_element() { |
| 57 | + let array = vec![6]; |
| 58 | + assert_eq!(maximum_subarray(&array), 6); |
| 59 | + let array = vec![-6]; |
| 60 | + assert_eq!(maximum_subarray(&array), -6); |
| 61 | + } |
| 62 | +} |
0 commit comments