|
1 | 1 | #!/usr/bin/env python3 |
2 | 2 | import unittest |
3 | 3 |
|
| 4 | +import numpy as np |
4 | 5 | import torch |
5 | 6 |
|
6 | 7 | from captum.optim._param.image import images |
7 | | -from tests.helpers.basic import BaseTest, assertTensorAlmostEqual |
| 8 | +from tests.helpers.basic import ( |
| 9 | + BaseTest, |
| 10 | + assertArraysAlmostEqual, |
| 11 | + assertTensorAlmostEqual, |
| 12 | +) |
| 13 | +from tests.optim.helpers import numpy_image |
| 14 | + |
| 15 | + |
| 16 | +class TestSetupBatch(BaseTest): |
| 17 | + def test_setup_batch_chw(self) -> None: |
| 18 | + init = torch.randn(3, 4, 4) |
| 19 | + |
| 20 | + batch_test = images.ImageParameterization() |
| 21 | + tensor_wbatch = batch_test.setup_batch(init) |
| 22 | + array_wbatch = numpy_image.setup_batch(init.numpy()) |
| 23 | + |
| 24 | + assertArraysAlmostEqual(tensor_wbatch.numpy(), array_wbatch) |
| 25 | + |
| 26 | + def test_setup_batch_chwr(self) -> None: |
| 27 | + init = torch.randn(3, 4, 4, 2) |
| 28 | + |
| 29 | + batch_test = images.ImageParameterization() |
| 30 | + tensor_wbatch = batch_test.setup_batch(init, dim=4) |
| 31 | + array_wbatch = numpy_image.setup_batch(init.numpy(), dim=4) |
| 32 | + |
| 33 | + assertArraysAlmostEqual(tensor_wbatch.numpy(), array_wbatch) |
| 34 | + |
| 35 | + def test_setup_batch_init(self) -> None: |
| 36 | + init = torch.randn(5, 3, 4, 4) |
| 37 | + |
| 38 | + batch_test = images.ImageParameterization() |
| 39 | + tensor_wbatch = batch_test.setup_batch(init, dim=3) |
| 40 | + array_wbatch = numpy_image.setup_batch(init.numpy(), dim=3) |
| 41 | + |
| 42 | + assertArraysAlmostEqual(tensor_wbatch.numpy(), array_wbatch) |
8 | 43 |
|
9 | 44 |
|
10 | 45 | class TestFFTImage(BaseTest): |
11 | 46 | def test_pytorch_fftfreq(self) -> None: |
12 | | - assertTensorAlmostEqual( |
13 | | - self, |
14 | | - images.FFTImage.pytorch_fftfreq(4, 4), |
15 | | - torch.tensor([0.0000, 0.0625, -0.1250, -0.0625]), |
16 | | - 0, |
| 47 | + assertArraysAlmostEqual( |
| 48 | + images.FFTImage.pytorch_fftfreq(4, 4).numpy(), np.fft.fftfreq(4, 4) |
17 | 49 | ) |
18 | 50 |
|
19 | 51 | def test_rfft2d_freqs(self) -> None: |
20 | | - assertTensorAlmostEqual( |
21 | | - self, |
22 | | - images.FFTImage.rfft2d_freqs(height=2, width=3), |
23 | | - torch.tensor([[0.0000, 0.3333, 0.3333], [0.5000, 0.6009, 0.6009]]), |
24 | | - delta=0.0002, |
| 52 | + height = 2 |
| 53 | + width = 3 |
| 54 | + assertArraysAlmostEqual( |
| 55 | + images.FFTImage.rfft2d_freqs(height, width).numpy(), |
| 56 | + numpy_image.FFTImage.rfft2d_freqs(height, width), |
25 | 57 | ) |
26 | 58 |
|
| 59 | + def test_fftimage_forward_randn_init(self) -> None: |
| 60 | + if torch.__version__ == "1.2.0": |
| 61 | + raise unittest.SkipTest( |
| 62 | + "Skipping FFTImage test due to insufficient Torch version." |
| 63 | + ) |
| 64 | + size = (224, 224) |
| 65 | + |
| 66 | + fftimage = images.FFTImage(size=size) |
| 67 | + fftimage_np = numpy_image.FFTImage(size=size) |
| 68 | + |
| 69 | + fftimage_tensor = fftimage.forward() |
| 70 | + fftimage_array = fftimage_np.forward() |
| 71 | + |
| 72 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 73 | + |
| 74 | + def test_fftimage_forward_init_randn_batch(self) -> None: |
| 75 | + if torch.__version__ == "1.2.0": |
| 76 | + raise unittest.SkipTest( |
| 77 | + "Skipping FFTImage test due to insufficient Torch version." |
| 78 | + ) |
| 79 | + size = (224, 224) |
| 80 | + batch = 5 |
| 81 | + |
| 82 | + fftimage = images.FFTImage(size=size, batch=batch) |
| 83 | + fftimage_np = numpy_image.FFTImage(size=size, batch=batch) |
| 84 | + |
| 85 | + fftimage_tensor = fftimage.forward() |
| 86 | + fftimage_array = fftimage_np.forward() |
| 87 | + |
| 88 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 89 | + |
| 90 | + def test_fftimage_forward_init_randn_channels(self) -> None: |
| 91 | + if torch.__version__ == "1.2.0": |
| 92 | + raise unittest.SkipTest( |
| 93 | + "Skipping FFTImage test due to insufficient Torch version." |
| 94 | + ) |
| 95 | + size = (224, 224) |
| 96 | + channels = 4 |
| 97 | + |
| 98 | + fftimage = images.FFTImage(size=size, channels=channels) |
| 99 | + fftimage_np = numpy_image.FFTImage(size=size, channels=channels) |
| 100 | + |
| 101 | + fftimage_tensor = fftimage.forward() |
| 102 | + fftimage_array = fftimage_np.forward() |
| 103 | + |
| 104 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 105 | + |
| 106 | + def test_fftimage_forward_init_chw(self) -> None: |
| 107 | + if torch.__version__ == "1.2.0": |
| 108 | + raise unittest.SkipTest( |
| 109 | + "Skipping FFTImage test due to insufficient Torch version." |
| 110 | + ) |
| 111 | + size = (224, 224) |
| 112 | + init_tensor = torch.randn(3, 224, 224) |
| 113 | + init_array = init_tensor.numpy() |
| 114 | + |
| 115 | + fftimage = images.FFTImage(size=size, init=init_tensor) |
| 116 | + fftimage_np = numpy_image.FFTImage(size=size, init=init_array) |
| 117 | + |
| 118 | + fftimage_tensor = fftimage.forward() |
| 119 | + fftimage_array = fftimage_np.forward() |
| 120 | + |
| 121 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 122 | + assertArraysAlmostEqual(fftimage_tensor.detach().numpy(), fftimage_array) |
| 123 | + |
| 124 | + def test_fftimage_forward_init_bchw(self) -> None: |
| 125 | + if torch.__version__ == "1.2.0": |
| 126 | + raise unittest.SkipTest( |
| 127 | + "Skipping FFTImage test due to insufficient Torch version." |
| 128 | + ) |
| 129 | + size = (224, 224) |
| 130 | + init_tensor = torch.randn(1, 3, 224, 224) |
| 131 | + init_array = init_tensor.numpy() |
| 132 | + |
| 133 | + fftimage = images.FFTImage(size=size, init=init_tensor) |
| 134 | + fftimage_np = numpy_image.FFTImage(size=size, init=init_array) |
| 135 | + |
| 136 | + fftimage_tensor = fftimage.forward() |
| 137 | + fftimage_array = fftimage_np.forward() |
| 138 | + |
| 139 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 140 | + assertArraysAlmostEqual(fftimage_tensor.detach().numpy(), fftimage_array) |
| 141 | + |
| 142 | + def test_fftimage_forward_init_batch(self) -> None: |
| 143 | + if torch.__version__ == "1.2.0": |
| 144 | + raise unittest.SkipTest( |
| 145 | + "Skipping FFTImage test due to insufficient Torch version." |
| 146 | + ) |
| 147 | + size = (224, 224) |
| 148 | + batch = 5 |
| 149 | + init_tensor = torch.randn(1, 3, 224, 224) |
| 150 | + init_array = init_tensor.numpy() |
| 151 | + |
| 152 | + fftimage = images.FFTImage(size=size, batch=batch, init=init_tensor) |
| 153 | + fftimage_np = numpy_image.FFTImage(size=size, batch=batch, init=init_array) |
| 154 | + |
| 155 | + fftimage_tensor = fftimage.forward() |
| 156 | + fftimage_array = fftimage_np.forward() |
| 157 | + |
| 158 | + self.assertEqual(fftimage_tensor.detach().numpy().shape, fftimage_array.shape) |
| 159 | + assertArraysAlmostEqual(fftimage_tensor.detach().numpy(), fftimage_array) |
| 160 | + |
27 | 161 |
|
28 | 162 | class TestPixelImage(BaseTest): |
29 | 163 | def test_pixelimage_random(self) -> None: |
|
0 commit comments