diff --git a/physics-informed-neural-networks-for-steady-cavity-flow/cavityFlowWithPINNs.m b/physics-informed-neural-networks-for-steady-cavity-flow/cavityFlowWithPINNs.m index b3d71ae..7ab6bf6 100644 --- a/physics-informed-neural-networks-for-steady-cavity-flow/cavityFlowWithPINNs.m +++ b/physics-informed-neural-networks-for-steady-cavity-flow/cavityFlowWithPINNs.m @@ -1,60 +1,25 @@ -%% Cavity flow with Physics-Informed Neural Networks - -% Copyright 2025 The MathWorks, Inc. - -% Solve steady cavity flow governed by 2d Navier-Stokes equations and continuity -% equation, using a Physics-Informed Neural Network (PINN). -% -% The steady, 2d Navier-Stokes equations for an incompressible fluid are: -% -% $$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 $$ -% -% $$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + \frac{\partial -% p}{\partial x} - \frac{1}{Re}\bigg( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 -% u}{\partial y^2} \bigg) = 0$$ -% -% $$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + \frac{\partial -% p}{\partial y} - \frac{1}{Re}\bigg( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 -% v}{\partial y^2} \bigg) = 0$$ -% -% $(x,y)$ are the spatial coordinates, $(u,v)$ is the fluid velocity, $p$ is -% the pressure and $Re$ is the Reynolds number. -% -% In order to automatically satisfy the continuity equation we use the -% streamfunction $\psi$, such that $u = \partial\psi / \partial y$ and $v = -% -\partial\psi /\partial x$. The cavity is defined as the square domain -% $[0,1]\times [0,1]$. The boundary conditions are $(u,v)=(1,0)$ at the top -% boundary and $(u,v)=(0,0)$ at the other boundaries. Additionally, -% $\psi=0$ is assumed on all the boundaries. The Reynolds number is -% $Re=100$. -% -% The PINNs model takes the spatial coordinates $(x,y$) as inputs and returns -% the streamfunction and pressure $(\psi, p)$ as outputs. -% -% This work is inspired by the following GitHub repo: -%% Set parameters - +%[text] # Cavity Flow with Physics-Informed Neural Networks +%[text] Physics-Informed Neural Networks (PINNs) are neural networks that incorporate physical laws described by differential equations into their loss functions to guide the learning process toward solutions that are more consistent with the underlying physics. PINNs can be used to approximate solutions to PDEs and ODEs, and to solve inverse problems. In this example we demonstrate the use of PINNs to solve steady cavity flow governed by 2-D steady Navier-Stokes equations and continuity equation. +%[text] The steady 2-D Navier-Stokes equations for an incompressible fluid are the continuity equation: +%[text] $\\frac{\\partial u}{\\partial x} + \\frac{\\partial v}{\\partial y} = 0 \n$ +%[text] and the momentum equations: +%[text] $u\\frac{\\partial u}{\\partial x} + v\\frac{\\partial u}{\\partial y} + \\frac{\\partial p}{\\partial x} - \\frac{1}{Re}\\bigg( \\frac{\\partial^2 u}{\\partial x^2} + \\frac{\\partial^2 u}{\\partial y^2} \\bigg) = 0$ +%[text] $u\\frac{\\partial v}{\\partial x} + v\\frac{\\partial v}{\\partial y} + \\frac{\\partial p}{\\partial y} - \\frac{1}{Re}\\bigg( \\frac{\\partial^2 v}{\\partial x^2} + \\frac{\\partial^2 v}{\\partial y^2} \\bigg) = 0$ +%[text] $(x,y)$ are the spatial coordinates, $(u,v)$ is the fluid velocity, $p$ is the pressure and $Re$ is the Reynolds number. +%[text] In order to automatically satisfy the continuity equation we use the streamfunction $\\psi$, such that $u = \\partial\\psi / \\partial y$ and $v = -\\partial\\psi /\\partial x$. The cavity is defined as the square domain $\[0,1\]\\times \[0,1\]$. The boundary conditions are $(u,v)=(u\_0,0)$ at the top boundary and $(u,v)=(0,0)$ at the other boundaries. Additionally, $\\psi=0$ is assumed on all the boundaries. +%[text] The PINNs model takes the spatial coordinates $(x,y$) as inputs and returns the streamfunction and pressure $(\\psi, p)$ as outputs. +%[text] This work is inspired by the following GitHub repo: [https://github.com/okada39/pinn\_cavity](https://github.com/okada39/pinn_cavity) +%[text] ## Set Parameters +%[text] Specify the Reynolds number $Re$ and the magnitude of the fluid velocity $u\_0$ at the top boundary. Re = 100; u0 = 1; -%% Create network -% The core network architecture is a standard multi-layer perceptron (MLP) with -% |numHiddenUnits=32| and swish activations. We use separate inputs for |x| and -% |y| because it makes it easier to compute derivatives with respect to these -% inputs later when imposing the PINNs loss. In addition to the MLP, we use anchor -% functions to impose the $\psi=0$ boundary condition. For example, the anchor -% function in $x$ ensures that the boundary condition is strictly enforced by -% multiplying the unconstrained network estimate for $\psi$ by the function $4x(1-x)$ -% -- which is $0$ at the boundaries (i.e. when $x=0$ or $x=1$). The factor $4$ -% is chosen so that the anchor function has a maximum of one. We include two anchor -% functions, one for the $x$-coordinate and one for the $y$-coordinate, then multiply -% them with the "free" $\psi$ estimation to produce the final output for $\psi$. - -% Create basic MLP network architecture with two inputs (x,y) and two -% outputs (psi,p). +%% +%[text] ## Create Network +%[text] The core network architecture is a standard multi-layer perceptron (MLP) with `numHiddenUnits=32` and swish activations. Separate inputs are used for `x` and `y` because it makes it easier to compute derivatives with respect to these inputs later when imposing the PINNs loss. In addition to the MLP, anchor functions are used to impose the $\\psi=0$ boundary condition. For example, the anchor function on $x$ ensures that the boundary condition is strictly enforced by multiplying the unconstrained network estimate for $\\psi$ by the function $4x(1-x)$ -- which is $0$ at the boundaries (i.e. when $x=0$ or $x=1$). The factor $4$ is chosen so that the anchor function has a maximum of one. The network includes two anchor functions, one for the $x$-coordinate and one for the $y$-coordinate. The outputs of each anchor function are multiplied by the "free" $\\psi$ estimation to produce the final network estimation for $\\psi$. +%[text] Create a basic MLP network architecture with two inputs $(x,y)$ and two outputs $(\\psi,p)$. numHiddenUnits = 32; net = dlnetwork(); -layers = [ featureInputLayer(1, Name="x") +layers = [ inputLayer([1 NaN], "CB", Name="x") concatenationLayer(1, 2) fullyConnectedLayer(numHiddenUnits) swishLayer() @@ -68,156 +33,79 @@ net = addLayers(net, layers); net = addLayers(net, fullyConnectedLayer(1, Name="p")); net = connectLayers(net, "swishout", "p"); -net = addInputLayer(net, featureInputLayer(1, Name="y"), Initialize=false); - -% Add anchor functions to strictly enforce boundary conditions on the -% streamfunction. +net = addInputLayer(net, inputLayer([1 NaN], "CB", Name="y"), Initialize=false); +%[text] Add anchor functions to strictly enforce boundary conditions on the streamfunction. net = addLayers(net, [functionLayer(@(x)4.*x.*(1-x), Name="anchorX", Acceleratable=true); multiplicationLayer(3, Name="psi")]); net = addLayers(net, functionLayer(@(y)4.*y.*(1-y), Name="anchorY", Acceleratable=true)); net = connectLayers(net, "x", "anchorX"); net = connectLayers(net, "y", "anchorY"); net = connectLayers(net, "anchorY", "psi/in2"); net = connectLayers(net, "psiFree", "psi/in3"); - -% Make sure outputs are ordered (psi,p). +%[text] Make sure the network outputs are ordered $(\\psi,p)$. net.OutputNames = ["psi", "p"]; - -% Initialize the network and cast to double precision. +%[text] Initialize the network and cast its learnable parameters to double precision. net = initialize(net); net = dlupdate(@double, net); - -% Visually inspect the network. +%[text] Visually inspect the network. analyzeNetwork(net) -%% Create training input - +%% +%[text] ## Create Training Input and Output Data +%[text] First choose a set a points in the cavity interior $(0,1)\\times (0,1)$, where the momentum equations will be imposed during training. For this a uniform random sampling is used. numTrainSamples = 1e4; -xyEquation = rand([numTrainSamples 2]); - +xyEquation = rand([2 numTrainSamples]); +%[text] Next a set a points on the cavity boundaries are chosen, where the boundary conditions will be imposed during training. For this a uniform random sampling is used again, with rounding to make sure that each point is on the cavity boundary. numBoundarySamples = floor(numTrainSamples/2); -xyTopBottom = rand([numBoundarySamples 2]); % top-bottom boundaries. -xyTopBottom(:, 2) = round(xyTopBottom(:, 2)); % y-position is 0 or 1. - -xyLeftRight = rand([numBoundarySamples 2]); % left-right boundaries. -xyLeftRight(:, 1) = round(xyLeftRight(:, 1)); % x-position is 0 or 1. - -xyBoundary = cat(1, xyTopBottom, xyLeftRight); -idxPerm = randperm(size(xyBoundary, 1)); -xyBoundary = xyBoundary(idxPerm, :); -%% Create training output - -zeroVector = zeros([numTrainSamples 1]); -uvBoundary = [zeroVector zeroVector]; -uvBoundary(:, 1) = u0.*floor( xyBoundary(:, 2) ); -%% Train the model -% Train using the L-BFGS optimizer, using a GPU is one is available. - -% Prepare training data. +xyTopBottom = rand([2 numBoundarySamples]); % top-bottom boundaries. +xyTopBottom(2, :) = round(xyTopBottom(2, :)); % y-position is 0 or 1. + +xyLeftRight = rand([2 numBoundarySamples]); % left-right boundaries. +xyLeftRight(1, :) = round(xyLeftRight(1, :)); % x-position is 0 or 1. + +xyBoundary = cat(2, xyTopBottom, xyLeftRight); +idxPerm = randperm(size(xyBoundary, 2)); +xyBoundary = xyBoundary(:, idxPerm); +%[text] Finally, create a variable containing the fluid velocities on the boundary. The velocity is zero everywhere except at the top boundary $y=1,$ where $u=u\_0$. +zeroVector = zeros([1 numTrainSamples]); +uvBoundary = [zeroVector; zeroVector]; +uvBoundary(1, :) = u0.*floor( xyBoundary(2, :) ); +%% +%[text] ## Train the Model +%[text] Prepare the data for training by casting the inputs to `dlarray`. A GPU is used if one is available. xyEquation = dlarray(xyEquation); xyBoundary = dlarray(xyBoundary); if canUseGPU xyEquation = gpuArray(xyEquation); xyBoundary = gpuArray(xyBoundary); end - -% Create training progress plot. -monitor = trainingProgressMonitor(); +%[text] Visualize training performance with an instance of `trainingProgressMonitor`. In order to better understand the network's convergence during training, individual components of the total training loss are plotted separately. This provides insight during the training process as to where the model is fitting well. It can also provide insight on how to scale the individual components of the loss so that terms are initially well balanced. Losses are plotted in log scale to better visualize values close to zero. +monitor = trainingProgressMonitor(); %[output:979aa64f] monitor.XLabel = "Iteration"; -monitor.Metrics = ["TotalLoss", "LossEqnX", "LossEqnY", "LossBC"]; +monitor.Metrics = ["TotalLoss", "LossEqnX", "LossEqnY", "LossBC"]; %[output:979aa64f] groupSubPlot(monitor, "Loss", ["TotalLoss", "LossEqnX", "LossEqnY", "LossBC"]) yscale(monitor, "Loss", "log"); - -% Train with L-BFGS. -maxIterations = 1e4; -solverState = []; -lossFcn = dlaccelerate(@pinnsLossFunction); -lbfgsLossFcn = @(n)dlfeval(lossFcn, n, xyEquation, xyBoundary, zeroVector, uvBoundary, Re); -for iteration = 1:maxIterations - [net, solverState] = lbfgsupdate(net, lbfgsLossFcn, solverState, NumLossFunctionOutputs=5); - - % loss = extractdata(solverState.Loss); - additionalLosses = solverState.AdditionalLossFunctionOutputs; - % additionalLosses = cellfun(@extractdata, additionalLosses); - recordMetrics(monitor, ... - iteration, ... - TotalLoss=solverState.Loss, ... - LossEqnX=additionalLosses{1}, ... - LossEqnY=additionalLosses{2}, ... - LossBC=additionalLosses{3}); -end -%% Plot predictions - -% Create test set using meshgrid. -numTestSamples = 100; -x = linspace(0, 1, numTestSamples)'; -y = x; -[xt, yt] = meshgrid(x, y); - -% Flatten gridpoints and prepare data. -xTest = dlarray(xt(:)); -yTest = dlarray(yt(:)); -if canUseGPU - xTest = gpuArray(xTest); - yTest = gpuArray(yTest); -end - -% Evaluate the network. -[psiTest, pTest, uTest, vTest] = dlfeval(@calculateStreamfunctionPressureAndVelocity, net, xTest, yTest); - -% Return predictions to grid and plot. -ut = unflattenAndExtract(uTest, numTestSamples); -vt = unflattenAndExtract(vTest, numTestSamples); -pt = unflattenAndExtract(pTest, numTestSamples); -psit = unflattenAndExtract(psiTest, numTestSamples); - -figure; -subplot(2,2,1) -contourf(xt, yt, psit) -colorbar -axis equal -title('psi') - -subplot(2,2,2) -contourf(xt, yt, pt) -colorbar -axis equal -title('p') - -subplot(2,2,3) -contourf(xt, yt, ut) -colorbar -axis equal -title('u') - -subplot(2,2,4) -contourf(xt, yt, vt) -colorbar -axis equal -title('v') -%% Loss function and helper functions - +%[text] Create the function `pinnsLossFunction` which takes as inputs the neural network, the network inputs and targets, the Reynolds number $Re$, and returns the total loss, individual losses and the gradients of the total loss with respect to the learnable parameters. function [loss, grads, lossEqnX, lossEqnY, lossBC] = pinnsLossFunction(net, xyEquation, xyBoundary, zeroVector, uvBoundary, Re) - % Get model outputs at interior points. -xeq = xyEquation(:, 1); -yeq = xyEquation(:, 2); +xeq = xyEquation(1, :); +yeq = xyEquation(2, :); [psi, p] = forward(net, xeq, yeq); % Compute gradients. -u = dljacobian(psi', yeq, 1); -v = -1.*dljacobian(psi', xeq, 1); +u = dljacobian(psi, yeq, 1); +v = -1.*dljacobian(psi, xeq, 1); -ux = dljacobian(u', xeq, 1); -uy = dljacobian(u', yeq, 1); -uxx = dljacobian(ux', xeq, 1); -uyy = dljacobian(uy', yeq, 1); +ux = dljacobian(u, xeq, 1); +uy = dljacobian(u, yeq, 1); +uxx = dljacobian(ux, xeq, 1); +uyy = dljacobian(uy, yeq, 1); -vx = dljacobian(v', xeq, 1); -vy = dljacobian(v', yeq, 1); -vxx = dljacobian(vx', xeq, 1); -vyy = dljacobian(vy', yeq, 1); +vx = dljacobian(v, xeq, 1); +vy = dljacobian(v, yeq, 1); +vxx = dljacobian(vx, xeq, 1); +vyy = dljacobian(vy, yeq, 1); -px = dljacobian(p', xeq, 1); -py = dljacobian(p', yeq, 1); +px = dljacobian(p, xeq, 1); +py = dljacobian(p, yeq, 1); % Momentum equations. lx = u.*ux + v.*uy + px - (1/Re).*(uxx + uyy); @@ -228,36 +116,111 @@ lossEqnY = logCoshLoss(ly, zeroVector); % Get model outputs at boundary points. -xbd = xyBoundary(:, 1); -ybd = xyBoundary(:, 2); +xbd = xyBoundary(1, :); +ybd = xyBoundary(2, :); psibd = forward(net, xbd, ybd); -ubd = dljacobian(psibd', ybd, 1); -vbd = -1.*dljacobian(psibd', xbd, 1); +ubd = dljacobian(psibd, ybd, 1); +vbd = -1.*dljacobian(psibd, xbd, 1); -uvbd = cat(2, ubd, vbd); +uvbd = cat(1, ubd, vbd); lossBC = logCoshLoss(uvbd, uvBoundary); % Total loss and model gradients loss = lossEqnX + lossEqnY + lossBC; grads = dlgradient(loss, net.Learnables); end - -function loss = logCoshLoss(y, t) -% log-cosh loss function -e = y - t; -loss = mean( log(cosh(e)), 'all' ); +%[text] Train using the L-BFGS optimizer, since it is well suited for training small networks. Train for 10,000 iterations. +maxIterations = 1e4; +solverState = []; +lossFcn = dlaccelerate(@pinnsLossFunction); +lbfgsLossFcn = @(n)dlfeval(lossFcn, n, xyEquation, xyBoundary, zeroVector, uvBoundary, Re); +for iteration = 1:maxIterations %[output:group:47bb22c0] + [net, solverState] = lbfgsupdate(net, lbfgsLossFcn, solverState, NumLossFunctionOutputs=5); + additionalLosses = solverState.AdditionalLossFunctionOutputs; + recordMetrics(monitor, ... %[output:979aa64f] + iteration, ... %[output:979aa64f] + TotalLoss=solverState.Loss, ... %[output:979aa64f] + LossEqnX=additionalLosses{1}, ... %[output:979aa64f] + LossEqnY=additionalLosses{2}, ... %[output:979aa64f] + LossBC=additionalLosses{3}); %[output:979aa64f] +end %[output:group:47bb22c0] +%% +%[text] ## Test Network +%[text] Evaluate the network on unseen test data. +%[text] Create uniformly spaced test data using `meshgrid`. +numTestSamples = 100; +x = linspace(0, 1, numTestSamples); +y = x; +[xt, yt] = meshgrid(x, y); +%[text] Flatten gridpoints and prepare data. +xTest = dlarray(xt(:))'; +yTest = dlarray(yt(:))'; +if canUseGPU + xTest = gpuArray(xTest); + yTest = gpuArray(yTest); end - +%[text] Create the function `calculateStreamfunctionPressureAndVelocity` which takes as inputs the neural network and positions $(x,y)$, and returns predictions for the streamfunction $\\psi$, the fluid pressure $p$, and the fluid velocity $(u,v)$. function [psi, p, u, v] = calculateStreamfunctionPressureAndVelocity(net, x, y) % Compute the streamfunction psi, pressure p and velocity (u,v) given % input positions (x,y). [psi, p] = forward(net, x, y); -u = dljacobian(psi', y, 1); -v = -1.*dljacobian(psi', x, 1); +u = dljacobian(psi, y, 1); +v = -1.*dljacobian(psi, x, 1); +end +%[text] Use `dlfeval` to evaluate `calculateStreamfunctionPressureAndVelocity` on the test data, since gradients of the streamfunction are required for the fluid velocities. +[psiTest, pTest, uTest, vTest] = dlfeval(@calculateStreamfunctionPressureAndVelocity, net, xTest, yTest); +%[text] Reshape the network predictions back to grid layout and plot the results. Use `contourf` to visualize the streamfunction, the pressure and the fluid velocities over the cavity domain. +ut = unflattenAndExtract(uTest, numTestSamples); +vt = unflattenAndExtract(vTest, numTestSamples); +pt = unflattenAndExtract(pTest, numTestSamples); +psit = unflattenAndExtract(psiTest, numTestSamples); + +figure; %[output:61d71273] +subplot(2,2,1) %[output:61d71273] +contourf(xt, yt, psit) %[output:61d71273] +colorbar %[output:61d71273] +axis equal %[output:61d71273] +title('psi') %[output:61d71273] + +subplot(2,2,2) %[output:61d71273] +contourf(xt, yt, pt) %[output:61d71273] +colorbar %[output:61d71273] +axis equal %[output:61d71273] +title('p') %[output:61d71273] + +subplot(2,2,3) %[output:61d71273] +contourf(xt, yt, ut) %[output:61d71273] +colorbar %[output:61d71273] +axis equal %[output:61d71273] +title('u') %[output:61d71273] + +subplot(2,2,4) %[output:61d71273] +contourf(xt, yt, vt) %[output:61d71273] +colorbar %[output:61d71273] +axis equal %[output:61d71273] +title('v') %[output:61d71273] +%% +%[text] ## Loss Function and Helper Functions +function loss = logCoshLoss(y, t) +% log-cosh loss function +e = y - t; +loss = mean( log(cosh(e)), 'all' ); end function x = unflattenAndExtract(xflat, sz) x = reshape(xflat, [sz sz]); x = extractdata(x); -end \ No newline at end of file +end + +%[appendix]{"version":"1.0"} +%--- +%[metadata:view] +% data: {"layout":"inline","rightPanelPercent":40} +%--- +%[output:979aa64f] +% data: {"dataType":"image","outputData":{"dataUri":"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAABDgAAAIICAIAAAAE2MlPAAAAB3RJTUUH6QoDCg4RXD7fDwAAIABJREFUeJzs3X9cU\/e9P\/C3UkIoyikaSFMIKY6WziJigkVtvVe82jKLjMIK01arc3ylQ+q6q9tK\/YGFsqul6w\/gFsdcaW21ukEZoGNqi86ulUqAKm7+4IIRMAUjNEiqBNHvH596dgaIQH4dwuv5uI\/7+OTNyTnvD4fZvHM+P8YFBAQQAAAAAACAmIx3dAIAAAAAAAB9oVABAAAAAADRQaECAAAAAACig0IFAAAAAABEB4UKAAAAAACIDgoVAAAAAAAQHRQqAAAAAAAgOihUAAAAAABAdFCoAAAAAACA6Nzl6AQGJpfLFy5cuIdb0Z4bfcOod3Q6lnJzc5PL5a2trd3d3Y7OxVLO1Bdyru44U1\/IubrjTH0h5+oO+iJabm5uKpXqm2++cY7uAMDIiPSJilwuf\/bZZ4lIoVAoFAo3NzcWd3NzG43tiRMnKpVK8eRj076wl8K28DCxxaVS6YDdEVueQ4kLb40Y8rEwzm6NVCoVST6WxPm+iCQfC+NSqfR73\/se3x2H52NJnPVFPPlYEnem+0JEEydO9PPzIwAY20RaqPD+Nze3qKgoNTWVvQwLCwsLCxt1bbVa7fAc7NYX9lLYFh6GuO3iwlsjhnysEler1aLKx5I4f4NEko8l8aCgIKf5ewsKChJVPrgvrK1Wq+VyOQHA2DYuICDA0TkMICQkZNu2bb\/Ln3yy8cUbRn17e\/v58+eJiOM4IjIajaOrzXGcUqmsqqpi33U5PB+b9oW9FLaFh4ktTkTBwcH9uyO2PIcSF94aMeRjYZzjuODg4HPnznV3d4shH0viRMT60tbWJoZ8LIxzHBceHl5bW8u64\/B8LImzvhw5coSNL3J4PrgvfNzf33\/q1KnV1dUY+gUwlom6UNGnT0mqCGu72uTodCzFPnJVVVU5wT+4ztQXcq7uOFNfyLm640x9IefqDvoiWhzHaTSauro65+gOAIyM2Id+AQAAAADAGCT2QmU8p3B0CgAAAAAAYG9iL1QAAAAAAGAMEuk+KgAAACKkUIj0Ob+bm5uXl5dCoRDzpA69Xu\/oFABgNEGhAgAAMCQKhWLDhg3ClaZhWKqrqzMyMlCuAMAQoVABAAAYEoVCoVar8VF7ZGbMmPHTn\/7U0VkAwGgi9kLlsqTX0SkAAAD8S3V1NQoVAAA7wGR6AAAAAAAQHVEXKpcl1x2dAgAAgEgVFBR88e8OHjwYHh7e57D4+Ph9+\/b1jzMpKSmFhYUBAQEFBQUFBQU2TxoAYMjEPvQLAAAABrRixQoiCg8Pz8jIKCkpyc7OdnRGAADWJOonKgAAADAs8fHxR44c4Z+uhIeHJyYmTpo0KSMjIzw8PCUlhX\/8kpKSMtyzEVFAQEBhYSE7w9atWweMAABYhagLFYPkukKhUCgUbm5uLOLm5jYa266urg7PwW59YS+FbeFhiNsuLrw1YsjHKnGpVCqqfCyJS6VSUeVjSVwikfDdEUM+lsQlEsmwjhc5VpYcO3Zs9uzZLS0tv\/zlL9va2vLz89vb2zds2KBSqaKjo994443Zs2f\/7W9\/mzdvXkBAwLDOFhAQkJSUdOXKldmzZ\/\/85z8PDAwMDw\/vHxk8yaH8nvl\/0ABgLBN1oUJEGzZuKCoqSk1NZS\/DwsLCwsJGXZtfdF8k+di0L+ylsC08DHHbxYW3Rgz5WCWuVqtFlY8lceHmG2LIx5J4UFCQ0\/y9BQUFDet4IVnqcfv\/n1dySf9MeCqVymw2FxUVEdH+\/fs9PT1nzpzJ\/3Tv3r0LFy7cu3cvETU3Nw9ynqGcrbKyMi4urrKycpDIgIb4vxe5XH7HDAHAWtja65988sm5c+fOnTv3ySefZGRkOHzbKLHPUclIz5D1XGxvb2cv6+rq+B+NojbHcUqlUjz52LQv4kl1rLWd6c+Mb586dYrfZlsM+VjYF4fnYK12Q0MD3x0x5GNhX4Z1vMjJ5XL+GZFOpzObzX0OKCgo4GuzixcvjuBsv\/rVr9gkfiLatWtXdnZ2\/8jgpx3K7\/n06dNTp04d\/DwAYC3p6ekRERE7d+587733GhsbiSggIGD+\/Plvv\/12RUXFxo0bHZWY2AsVvV5\/4UI1\/9JoNI7SNvsEKZ58bNcXh6c3rDbHcQ7PwYptZ\/oz49t8oSKSfEbQZn9m4snH8rbJZOJfiiEfC\/syrOOFDJkzB4w7UGtrK1+cqFQq4cA2IkpJSfH19f35z39eWVmZkpIyb968kZ2Nn8S\/adOm1tbWvXv39o8Mctoh3qP+VRYA2EJBQYFer583b9716\/9abpc9V9mxY0d6enpBQQH737j9iXroF3Z7BAAAGDqdTieRSGJjY4lo0aJFnZ2dx48f739YQEDAHauU252toKCAnzF\/7do1nU7XP2Kt7gCAraWnp+v1+pdeeklYpfCuX7\/+0ksv6fX69PR0++dG4n+iAgAAAENUWVmZn5+fnJz8xRdfdHV1bdiwobGx0cfHRyKRZGRkZGdnd3Z2vvnmm2az+dNPP33kkUd8fHyEbw8KCmIjuIjozJkzK1as6H+2d955JyMjgx\/oxWak9I8AgPip1eqIiIg7fm2xcePGw4cPq9Xq6urqwY+0OlEXKtjwEQAAYHCVlZULFy7kX+7du7fPyCvhASUlfefiV1ZWslklAw7tGPxst4sAwKgQGxu7c+dO\/lnKvn37vv\/97\/M\/1Wq1Tz\/9NBFdv359586dsbGx9i9URD30i4h6LmgdnQIAAAAAgLOZPXv2p59+ytpubm7CKoWIgoOD+fann346e\/ZsuyZHROIvVAZfhxEAAAAAAEbA39+frfF1R42Njf7+\/rbOpz9RFyqXJdddOMV4TuHoRAAAAAAAwK5EXahcq\/sLEblw9zk6EQAAAAAAp3LhwoWAgIChHBkQEHDhwgVb59OfqAuVJM9niUgSOMfRiQAAAIhOeHj4wYMHU1JSrHI2tmmjEL\/o8FBs3br14MGD4eHh7GVKSsqRI0fi4+OtkhsA2MIXX3wxf\/581u7u7v7nP\/8p\/KlwD9b58+fzSwLak6hX\/SKiOe0en949ydFZAAAAOD+2JPHI3sv2p3\/++ecrKyvDw8Ojo6P\/9Kc\/Db7zIwA4VlFR0dtvv71jxw628NeTTz454GF33XXXsmXLXnjhBftmRyTyJyqMC+aoAAAADFlKSgp7JFJYWMjGdfAR\/qFH\/8jtsOc2X3zxxe7duwsLC1NSUuLj4\/ft21dYWMjOwD\/Seeedd3x9fVNSUp5\/\/vmWlha26jEAiFZ1dXVFRcUdN3NMT0+vqKiw\/9rEJP4nKgZspQIAAKI0WyGx\/0Wbunqbr\/QOckB8fPyPfvSjXbt2lZWVZWVlbd68+Z133omMjHzjjTf27t27detWttN8n8gguzSyqmPFihUpKSlLly5lwQkTJtTV1cXFxRUUFMybN6+srKyxsbGysrKkpGTp0qVsd0jrdhwAbGHjxo0FBQW\/+c1vNm7c2H9z+rvuuis9PV2hUIz4WauFxF6orKuXr\/RydBIAAAD97I1ywH+fmq\/0zv7IMMgBcrncYDCwyuHw4cPR0dEPPfQQ\/9Nf\/epXRCR8hMIijHBnerPZnJubq9PpfH192TaRZWVl\/A7WZrNZq9USkVarFW5r\/eWXX0ZHR7e0tGB\/eoDRYsWKFenp6YcPH965c+enn37KFiwOCAiYP3\/+smXLKioqHFWlkPgLFSLyuVtpdHQOAAAAfXyhNzs6hQH4+fnx7dbWVrPZfPr06ffeey85OfnFF1+8ePHiunXrKisr+0TYR5P+c1TCw8PNZnNra2ufq5jNZp1O1\/\/qzz\/\/fGdnJxsAhqFfAKPFxo0b1Wp1bGxsXl4e2y\/lwoULX3zxxQsvvOCQEV+8UVCoAAAAiFB8WYejUxhAc3NzYGAga8vlcolEQkR79+5l89q3bt26efPmFStW9I\/c7oQSiUQulw\/l0ikpKb6+vhs2bHjkkUeio6O\/\/PJLPFcBGC2qq6sdW5MMSNST6W\/STSIaj31UAAAAhqa1tVUmk0VFRQUEBMybN6+lpUWlUu3bt48f7tXa2spmwwsjtztbZWVlS0vLvHnzAgICoqKi7rvvtv9FZnNjSkpKKisrs7OzW1pann\/+eet2DQDGGlE\/UTnd+7fvu\/xnUJfbGUdnAgAAIE5Lly7l57jv2rUrOztbLpez4MWLF7ds2dLY2KjRaN58800i4gd69YmwtwvnqNCtkWBbtmzJysratWtXe3t7e3v7gDlMmzYtMTGxsbGRH+71zjvvZGRkbN26VTgHBgBgWERdqBiutZCHo5MAAAAQpcrKyoULF\/aPZ2dn95kf0r9a6B+53eivxsbGuLg4IgoICMjKyiLBQDLhtdiE+zvmBgAwdOIe+nXzBhE92CWd8OB3m9O7ubm5ubmNurarq6vDc7BbX9hLYVt4GOK2iwtvjRjysUpcKpWKKh9L4lKpVFT5WBKXSCR8d8SQjyVxNoVj6MeD5Ybye+b\/QQOAsUzUhcqiRd9tkPncU0+wRlhYWFhY2Khrq9Vqh+dgt76wl8K28DDEbRcX3hox5GOVuFqtFlU+lsT5GySSfCyJBwUFOc3fW1BQ0LCOH8vYoxXL1\/Ia4v9ehjiDHwCcmIuXlxi3KZHL5QsXLnztgw0zaHGz+\/Wd5\/9+tf5zIurs7Gxra+vu7h5d7a6uLo7jLl682N7eLoZ8bNoX9lLYFh4mtjgR+fj49O+O2PIcSlx4a8SQj4VxqVTq4+Nz+vRpvV4vhnwsibM\/s9OnT5tMJjHkY2FcKpV6eHicPHmSdcfh+VgSZ33R6XS9vb1DOV6hUDz55JN79uzp6uoiGCb+t9fS0nLH+9XT0zNx4kS9Xs9uDQCMTeMCAgIcncMAQkJCtm3blvTM2s0PlV6WXH\/x+u+6yrY4OqmR4zguODi4qqqK\/+d49HKmvpBzdceZ+kLO1R1n6gs5V3eG2xe1Wp2bmxsbG6vX622dm\/MZ1m+P4ziNRlNXV+cEf2YAMGKiHvrl7a5kDem0RY7NBAAAQGzCw8MPHjyYkpJilbMVFBR88e+2bt06rEyEx\/ePAAAMl6hX\/fqXcePvWbXrmx1LHZ0HAACA0+q\/M\/0QVVZW5ufnJyYmxsfHswXBnn\/++ZaWFqxNDACWGAWFSq9R32vU3yV\/YELU5lE9AAwAAMAOUlJS2M4q\/K4pfKSrq2vDhg2VlZX9I7c7W3h4eEZGxoQJE86fPy+RSA4fPtza2vrcc89du3aN7f\/INm\/Zu3evRqNJSEg4fvz4zJkzvb29X3nlFXv1GACck6gLlVPtn5OKiKgjN1qWelwaEvXt0d\/dMGJkMAAAON6SGJX9L3qhxfT344ZBDmA7xO\/atausrCwrK2vz5s3vvPNOZGTkG2+8sXfv3q1bt8bGxhJRn8gghQp7NrJixQq+tiGiCRMm1NXVxcXFFRQUzJs3r6ysrLGxsaioKCMjIz4+\/pFHHikvLx\/knAAAQyHqQoWINh57KmX620TUc\/646\/0zJyWXGDJnOjopAAAAysnU2P+iF1q+nbGwfJAD5HK5wWBglcPhw4ejo6Mfeugh\/qdsLFZ4eHifCCPcmd5sNufm5up0Ol9fX7aZY1lZ2bx58\/ifarVaItJqtXywsrKypKRk6dKlFy9eLCsrs0JvAWBsE3uhwjPu+tmEqM3SkChZ6vFeo76rdEvPBa2jkwIAgLFrd7HO0SkMwM\/Pj2+3traazebTp0+\/9957ycnJL774IhsMVllZ2SfS2NhIA81RCQ8PN5vNra2tfa5iNpt1ugG6z4qZw4cPsxMCAFhi1BQqRNRVtqWrbItXcokLp+CezcOjFQAAcKA1qWL8vqy5uTkwMJC15XK5RCIhor1797I57lu3bt28efOKFSv6R253QolEgr0XAcAhRL088YA6cqOvfrmLiGSpxx2dCwAAgLi0trbKZLKoqKiAgIB58+a1tLSoVKp9+\/bxw71aW1vj4+P7RG53tsrKypaWlnnz5gUEBERFRbHZ8wAA9iHqJyo+7srNMz5uu9rUJ2469Ib7I1iqGAAAgJYuXcrPcWcLcMnlcha8ePHili1bGhsbNRrNm2++SYJ1wPpE2NuFc1To1kiwLVu2ZGVl7dq1q729vb293e79A4CxS9SFCpNUEdY\/2GvUu3CK8ZwCi4ABAMDYVFlZuXDhwv7x7Ozs7OxsYaT\/fib9I7cb\/dXY2BgXF0dEAQEBWVlZJBhI1v9a\/MEAAJYTdaHCnqX4uCv7P1Tp0WldQqIckRQAAACMVu+\/\/76Pj48wYjKZKioqnnjiCa1Wm5aW5qC8AGAAoi5UmLyIqtj9fafxfXv0d9KQqLvnrOz6S6ZDsgIAABhTnONpyfLly4koMTExLi7u2LFjfGWSk5PjyLQAYCBiL1Tarjb5uCsfnjTnVPvnA\/zYxdXuGQEAAIBTiYmJWbVqlVarfffdd9PT04mou7tbqVT29PR89tlnjz32mKura319\/Zo1a+hWkUNEJpMpMzOT7ScDALYwOlb98rlb2SfCpqZIMfoLAADGqvDw8IMHD6akpFjlbAUFBV8IbN26tc+FWLywsDAgIMAqVxQtLy+vffv25eXlEdEjjzySlpZ27NixwMDAxMTEmJiY6OjoY8eOrV692mQyrV27VqVSOTpfAKcl9kKl7du+s1N4336WT0Su\/g7YGBgAAMD5nDlzZvbs2bNnz37jjTfUanV8fDwRhYeHZ2RkVFdXsx\/V19dnZWU5d63S0dFRU1PT1NRkNpv1er1Wq21paWE\/Cg0NJaLa2lqdTtfQ0ODh4SGTyRyaLIAzE3uh0tx19nY\/6m37PyKasHizHdMBAAAQu5SUlD5PP\/jIwYMH2fYp\/SNCx48f7+zsZPs8xsbGdnZ2sscLRMQaUVFjdESDTCZzdXVNSkoqLy+fNWuWRCJRKvsO+gAAaxF7oeLm4k5EPu4D\/CvQffqTayfKXDgF90ye3fMCAAAQo\/j4+B\/96Ee7du1im6ts3rw5PDw8MjLyjTfemD17dnV1dWxsbP9In5PMnDlTKpV++eWXAQEBgYGB9fX1jY2N7EdsSn2f5Y\/HDoPB0NPTk5eXFxkZGRkZuXjx4uLiYkcnBeC0xD6ZnnEd7zZgvKtsizQkylWlwYYqAABgZykhb9v\/om1XL+w5lzXIAXK53GAwlJWVNTY2Hj58ODo6+qGHHuJ\/yrZPET5CEW6oItzwcdeuXZWVleyBTHNzs3V7MXrV1tZqNJrQ0NCamho27X7jxo06nc7ReQE4p1FQqLRdbfrgzKtFi1r7L1JMRFeP7XSftewunwfMKFQAAMCOIvwS7H\/RtqtNgxcqfn5+fLu1tdVsNp8+ffq9995LTk5+8cUX2T70lZWVfSLsgQnbip5u7e3o5+fHBnoJzznGFRcXe3t7x8XFzZo1i636hSoFwHbEXqjUtf89wi+haFErEaWEvJ194oU+B5g+fdt91jLPp183ZM50RIIAADBG9f9Pkhg0NzcHBgaytlwul0gkJNhLfuvWrZs3b16xYkX\/iPAkjY2N9fX1crmcNQIDAwMCAvjRXwUFBVqtdlSP\/srPz8\/Pz+dfFhcX8yO42EYrRKTT6fh9Y4TH93kvANiO2AuViuY9\/LP1CL+EAR959xr1LpzC7qkBAMCYVtG8x9EpDKC1tVUmk0VFRZWVlc2bN6+lpUWlUm3atOmVV16prKxkB8THxz\/33HPCSJ+T8FNTiKioqCgjIyMpKYkNEtu6dauvr+8777xj954BwJgj9kLl34wbl\/DA+sEfeQMAAIwpS5cuZfPmiWjXrl3Z2dlyuZwFL168uGXLlsbGRo1G8+abbxIRP9CrT4S9XThH5cyZM6wyqays3LBhQ0ZGBvtRV1fXhg0bWIUDAGBTo6BQid0vz5j156mTZtHNm0TUf5f6rtIt3LN5E6I2d5VtcVCOAAAA9lZZWblw4cL+8ezs7D7jsoQz5m8X6TP6aygXAgCwKbEvT8xsOPbD1GPRrJ0y\/e2iRa1Fi1oTHvjuG6CeC1oikoZEeSWXOCxFAAAAAACwHlEXKopb3NzcTrdXslW\/+D1VEh5Y7+b23bLFV15\/jM1UcZv6hJubGx8XSdvV1dXhOditL+ylsC08DHHbxYW3Rgz5WCUulUpFlY8lcalUKqp8LIlLJBK+O2LIx5I4m2s+9OPBckP5PfP\/oAHAWCbqQiU3N7eoqKioqCg1NZVFvuwuIqKbtw54atZzrBEWFvbA6XwimhiTMf2xx8PCwvi4GNpqtdrhOditL+ylsC08DHHbxYW3Rgz5WCWuVqtFlY8lcf4GiSQfS+JBQUFO8\/cWFBQ0rOPBckP834tcPsCeBAAwpoxjezmJTUhIyLZt2zIyMvR6PRG1t7efP3+eiDiOI6Kt6k\/Yc5VXa5doL37Kx3tCEu6em0hnD\/Yc3Go0Gvm4w9scxymVyqqqKvYdpMPzsWlf2EthW3iY2OJEFBwc3L87YstzKHHhrRFDPhbGOY4LDg4+d+5cd3e3GPKxJE5ErC9tbW1iyMfCOMdx4eHhtbW1rDsOz8eSOOvLkSNHuru7h3K8Wq3Ozc1NTk5m\/22CYVEoFLm5ubGxsd9++y3d6X75+\/tPnTq1urqa3RoAGJtEXajExsYO+B8DT9dJBQv\/SUTZJ17oszqkLPU4EfUa9R250fZJdSjYR66qqion+AfXmfpCztUdZ+oLOVd3nKkv5FzdGW5fFArFhg0bhA\/HYFiqq6uTk5OHciTHcRqNpq6uzgn+zABgxEbBql\/9dfa0VzTv8XZXtn3b1OdHhsyZE6I2S0OiZKnHsQUkAABYkV6vz8jIUCjEuHOXp6env78\/ewjp6FxuC0+iAGBYRmWhQkRtVy94uyv7rFPMdJVt6SrbIks9Lks9fqXsle4TpfZPDwAAnJJerxfnp22O43p6ejBWCgCciagn0w9iz7ms4MlzXgn\/+HYHsMcpE6M2yVKPeyWXuM9+bjx2rwcAABjzNBpNYWFheXl5eXl5YWGhRqNhwd27d8fExAzl7f2PjImJ2b17t0aj4Ru2yh4E0tLS2H1MTExkkZiYmNLSUuGd7S8xMbH8lrS0tEHOn5OT0\/8A\/hJ93p6Tk1NeXl5aWsr+NlQq1fvvv88Oe\/\/991UqFf373x5\/5OA94t8y4PH9+8uf4XZXER6Qk5PT50d8qiIxWgsVItpz7rXBD2jPjW7Pje7RaV04hUfEmknJJV7JJeNcpYO\/CwAAAJyVRqNJTU09efJkZGRkZGTkyZMnU1NTrVhXFBcXL1myRKvVWuuEcDuJiYnTpk17+eWX8\/LyIiMjY2JiVCrVk08+uWPHDnZn165d2\/8zd1paWmRk5MsvvxwZGbl69eopU6b0+bA+OOEl8vLypk2bxsqAtLQ0T0\/P1atXl5SULFu2TKPRrFy5sqGhgV2FiFauXElESqXSbDazqy9evLi4uPiOPVq7dq1er4+MjOTPPGAyfH9ZB5n6+nqdTtfnKjKZ7NixY+yANWvW8PGYmBgRFtijdeiXj7vSx91\/8GNuGPVEZPwwiYjcH1kqnfljF04xef3RXqPe+MFq9lMAAAAYO5RKJRHV1tayl6WlpdOmTZs3b9706dO9vLxWrVpFRE1NTampqR4eHkRUX1+\/Zs2amJiYZcuWEdH48eO7u7vvuecediT7CKjRaJYtW+bh4ZGamlpRUfHoo49mZWWp1eq5c+d2d3crlUqTyVReXh4dHe3q6nrs2DH2NXxiYmJcXBwRtbW1bdy4UafT5eTkGAyGwb\/jB56vr69er9dqtQaDITY2NjQ0tLi4mH8QUVtbGxQUJJPJdDod\/xaNRhMUFLRz505WSep0urfeemvdunUxMTHsVubk5AQGBhJRYWGhr69vYGBgYGBgWloaf1N0Oh1\/iZqaGv66MpmsoaFBp9NVV1dHRkaq1WrhWxoaGqZMmaJSqby9vXt6egwGwxB71NTU5OrqeujQISI6cODA3Llz2WIe69at27Nnz+D9jYmJmTx5clZWFhGlpaXJZLI1a9aoVCpPT8+vvvqqz6VZzfP111+Lbc+o0fpExdtdGeGX4HO3cojHX\/1yV0dutCFzJtsXchL2sAcAABh7ampqTCZTUlIS+4Sn1Wrj4uJef\/31t956q6OjY8eOHTU1NWvXrmWPXPLy8hQKBfvKXCKRlJeXP\/XUU6+99ho7kv+iWqvV7ty5s6OjIzMzs7m5mb+Wj4\/Pl19+uXr1apPJFBkZmZaWVlhYOG3aNDZCjJ2ffd2+fv16IlqzZg2qlKGTyWTsE79Op+vs7JTJZMKfhoaG9i8J1Gp1T09PTU0NHzEYDD09PaGhoUTEfvnsvsyfP7+0tLS+vp4vLAdMwMPDo6WlhX36b2lpYSc0mUy+vr59juzs7NTpdL6+vj4+Ptu3bx9w1NngPWJ8fX21Wu2SJUv6PCfp398FCxacOXOGlWRpaWns4QnLOS4urs\/ouJUrV3Z3d7MuiMpoLVQuXW26SeTjrixa1DqsN3bkRl\/OmkdE3DN5NskMAAAAxEqn0y1fvrywsJB9VhNOBhAewD5ENjU1mc1mFjebzZcuXRrWtUwmU3V1NfvQefLkSa1We+nSJXbC0NBQk8lUU1Oj0+mOHj3q6ekpqokBo4Knp+eAcTapY9asWUePHhU+ThkQuztEpFKppkyZwh41DHH83sqVK\/V6fX5+Pvv0f7vDEhMTFQrFu+++S0Qymay+vp7VQhqNRvi3x6qdPu9lddSCBQuIaMaMGV5eXkPsL3ucUlrad0Ep9kSRDS3T6\/VstJhGo5kyZQrLUGxG69CvtqtN4261fdyVbVf7rlM8iJtmExG5qkQ3Dg8AAADsID8\/Pz8\/n4jYmK5Lly41Nf3rgwQ\/KIuIenp6WMNsNguPGQqTyXS7QT5ExL5Z54\/sM0gJ7ogVGP2xp2RsMpKnp+f06dN9fHyI6NixY4M8MRik2IiJiVm1apWrq2tPTw\/\/JC0nJ8fT03Pjxo106ynKgO9NTEyMjo7esWMHK3v4OSHFxcULFix9\/PXLAAAgAElEQVSYPn06fyRfMgnpdLqioqJVq1aVl5d3dHR0dXX174Kwv0TE\/rBDQ0MvX77cv9YqLi7mH8UcOnRo2bJlM2bMWLBgwdGjR7Va7eLFi2\/3+3GU0VqoEFH68aUbZ+4ioryIKiKK3S8f+nuNHyZxz+RNiNrcVbbFVvkBAACAyCQmJk6fPp3\/vMimGXh7e\/NFiEajiYyMLCwszM\/P12g069ats1EmbPaLjU4+FhgMBjY4ij2LaGho6PNTk8k0ceLE5cuX80GNRjN\/\/vwZM2bwNaFGo5k8efKhQ4cGKTaEH+4ZNv+ePzOrMdhwL348GBElJiayIX+3ezjTp44dsEf81dlf4+0e6wmHnLGnQ0ePHh3wSCGz2SyVShUKRWBgIF+cp6ens0lTd3y7HYzWoV9EVHPpk2+vD1xM31GPTktE0pAoq2YEAAAAolZdXa1QKPghN48\/\/riXl9ftPvwtXrx4woQJtkijtraWn\/2Sk5MjtjVhR4WWlhaFQqHRaGbMmOHh4VFbWytcOZoPCt+i1WrPnDnDr53F1tS6fPlycXExKzbYI46YmJjCwsLbrVXNqpQ+RabBYGDT5dlk9+rqalalZGZm8lUKW7CY\/e3FxMQoFIo+6fXvkfAtixcv7jPB5nb9lclkrq6uA\/5VJyYm8n9sCxYsuHz58kcffRQXF8cWATt27Bi\/tMNwboUNjeInKkRU+fVfIvwSRvbeayfKpCFRXsklHbnR1s0KAAAAxEmr1WZmZqamprLvj\/nBPCqVqqenZ9WqVTt27Dh58mRcXFxcXFxNTU1HR4e3t7fwMx+bNiBc9YuImpqaJBIJW\/VrKGkUFxd7e3snJSUlJSWZTKbMzEys+jVc+fn5vr6+r776KhEVFhaye7Fnz55Vq1YlJSUJg0JpaWmJiYnsXUQknCv\/2muvpaenl5eX8+8NDQ2dNWuWcNUvjUajUCg8PDzYYfwZ0tLScnJytm\/fzv6itFrtypUrPTw8+AuxAuCtt97i\/\/b6pzdgj9jQr7i4OP7vhD1aYat+DdhfNhFFOFKRX\/WLXYKNOWQpWeFO2NK4gIAAR+cwgJCQkG3btsXGxt5xA2B+Mn1SRdiwZqoQEfdMHpupwnaHtB2O44KDg6uqqpxgw2Bn6gs5V3ecqS\/kXN1xpr6Qc3UHfREtjuM0Gk1dXZ1zdAcARmYUD\/1iShq\/W7zL232oSxXzjB8mGT9KISJZ6nErpwUAAAAAABYY9YXK1etXLHl7T8OxXuz8CAAAAAAgMqO+UNlzLos1hr75Yx9sjooXtoAEAAAAABCNUV+oEFFSRRgRBU96dMRn6NFpXTgFBoABAAAAAIiEMxQqbHZKhF\/C\/ROnjuwMxg+TTJ+8RZisAgAAAAAgDs5QqJxq\/5w1fju3YsSrFV+t\/IBNVpn4wwyrZQYAAAAAACPiDIUKEe0+u5U12r4d3grFQsYPVhOR28NPYL4KAAAAAIBjOUmh8sf63+459xoRpc\/6eMQnuWHUt+dGs\/kqqFUAAAAAABzISQoVobyIKn4XyOG6YdRfKduCufUAAAAAAI7lPIXKv9YpdleSYMf64bph1Bs\/TLp2ooyIZKnHPR5fb60MAQAAAABgiJynUCGi2P1y4cuUkLdHfKqusi2GzJlE5B4Wzz2TZ2lmAAAAAAAwHE5VqBBR29UmIvqmu43GjYvwTSha1Mr+b8sjf\/JxV7L20M\/Wnhvda9S7qjQTojbbLGUAAAAAAOjL2QqVU5c\/J6KffDKNbt6kcf+KT5PNzYuoYm1WrgzlecsNo57tWy8NifJa\/UebZAwAAAAAAP04W6GSfeIFNgBsX+OOwY+M8EsY4tMVQ+bMHp3WZfL9mF4PAAAwqmk0msLCwnKB0tLSmJiYmJiY3bt3azQa2106LS3t\/fffV6lUfIS\/qB2u7pTS0tLYTUxMTBTGb\/f7jImJKS0tLS8vLyws5H86YJBRqVTvv\/8+uwR\/7\/jjy8vL09LSbNg9cL5Chbfjn6krDnyfiGL3y9n\/VTTv6TOJhYj4xyyDM36YdKVsCxFh2WIAAIDRrrCwMPKWxYsXFxcXOzaf4uLiJUuWaLVax6YxuiQmJk6bNu3ll1\/Oy8uLjIyMiYlh8ZiYmFWrVkkkkj7Hq1SqJ598cseOHZGRkSdPnly7dq1KpdJoNMuWLSspKWHBlStXCt+ycuXKhoaGyMjI1atXs5fCk+Tl5U2bNo2\/LtjCXY5OwIY6r7cLK5PsEy8QUex+OXuQcpNoHJGPu9LHXclmtgyu+0SZW+BcyUPzvVb\/qWP7j2yXNgAAADhQWlrarFmziKinp2fHjh01NTXp6ektLS3BwcGurq7Hjh1j36Pn5OQEBgYSUX19\/Zo1a+jWR2RXV1eTyZSZmckKj8TExLi4uJ6enq+\/\/lp4FfYR2cPDIzU1taKi4tFHH83KylKr1XPnzu3u7lYqlSaTqby8PDo6WnhRdjYiamtr27hxo06ny8nJMRgMY\/CrfV9fX71er9VqDQZDbGxsaGhocXFxYmJidHT0Z599Fhoayg6LiYlJSEjIysrSarX8g5fa2tqgoCCZTKZWq\/V6fX5+PhHxv8O0tDSZTLZmzRo+otPpGhoapkyZQkT8SWpqavjr2q\/bY4zTPlEZROx+ed3lz8cRNXedoyE\/VCGizqJf0c0bLpNVmFsPAADglPjv6SMjI3U63YIFC1j8wQcfTEtL479ET0xM9PT0XL169erVq93c3GJiYoTfzev1evaFfUxMTHR0dGFh4Zo1a9zc3IQX0mq1O3fu7OjoyMzMbG5u5uM+Pj5ffvnl6tWrTSZTZGRkWlpaYWHhtGnT2Agx9kU++4J\/\/fr1RCT8PD2myGQyg8FARDqdrrOzUyaTEVF+fv7ixYvPnDnDHzbg06rQ0NCenh6DweDr69vT08NGA\/JDv9LS0ljl2edynZ2dOp1OGPHw8GhpabFdH2EsFipEtKnyKSLaXvdL9nLoCxkbfhNORNKQKBslBgAAALYWFxfHz1HpM28kPz8\/Li6Ofa5ln4OZkydParXa4uJivV7Pf1tPRDqdLjExsbi4WK1WE1F1dTURHTp0yNXVVSaTeXt7d3R0HDhwQKfTHT16dCi5mUym6upq9uGbXfTSpUtms5mIQkNDTSZTTU0NO5unp6cw87HG09NzBO9ik5RmzZp19OhRVnUEBgbu3LmTlZd9hn7xEhMTFQrFu+++KwyuXLmSfxoDNuLMQ78Gx0aF\/Y\/2uV9r3ovwS6hr\/3tF856hvLE9N3pScoks9TjbaAUAAABGl8LCwj6fL2fMmMEaKpUqPT3dx8eHvayvr2eNPl+c5+fn+\/r6bt++nYj4cVkeHh6vvvoqO6Cnp0epVPr6+g43N5PJJCyQ+vDx8WEXZUfKZDLhd\/xjSmdn5wjepdVq4+LiNBpNamoqi+h0OjZ266uvvoqMjNRoNH0ev7DhZDt27BDGc3JyPD09N27caEEP4M7GbqHCfNlazhod19qG+JYbRn3XX34z4QcvyVKPt+dG3zDqbZYdAAAA2BX7Tn316tU6nY7NVWBxVnKoVCpPT09WSLDihBU2bN4CP2+EP5u3tzeb2GAt\/HwYMBgM7O6wm9LQ0DCs95pMJl9f35aWlilTpqhUqtvVe4mJiWwAXp8qhYiWL19uWQ\/gzsbo0C+hpIowItr0yEcPT5ozxLdcqylij1MmJZdIpgz1XQAAADBaaDSaadOm8S\/Zx9kZM2Z4eHjU1tampaWxT6tE1N3dfenSperqag8Pj8cff5yI2MQSjUbDB1Uq1dy5cy1Mqba2VqFQsGWmcnJy+gxaG2taWloUCoVGo+FvyuDHazSa3bt3s98e\/5bq6mpXV9cZM2awG8Rm5\/NvYVUKvy4Cw+47ykX7GOtPVIio7WpTV883E1zvSZn+to+7sv8SxrfDxoB5\/vit3lv7QgIAAID4xcXFsbWzmMLCwkuXLrF2aWlpamrq9u3bTSbTl19++fDDD993331E1NnZycZcFRYWFhcXs6XAysvLiejYsWNs7NDOnTtXrVrF1vjiRwqVl5ezy9XU1PDPZ5impiaJRMJW\/RpK2sXFxd7e3klJSUlJSWxhsbG86hcbfcfG2rGbMuBhwlW\/9uzZs2rVqqSkJOFbWNDV1bWtre21114jwapf06dPFw7na2tr2717t0Kh8PDwYLeeBAP\/wBbGBQQEODqHAYSEhGzbti02Nlavt9PAKn7zx7rLn7d+ez735ItDfKNXcokLpyCiK6Wbu0\/uH\/AYjuOCg4Orqqq6u7utkq0DOVNfyLm640x9IefqjjP1hZyrO+iLaHEcp9Fo6urqxNAdNrjr6NGjmDYNYGcY+vUdfiZ98OQ5\/6Vc6uOuHOIbO3Kj2TCwiYu3eP54qKuHAQAAAADAIFCofIdtB8l7ZdbHw3o7q1UkU2ZjixUAAABnotPpli9fjscpAPaHQuVfYvfL2cR6IvJxVw59I0iG1SrSkKiJi7dYPzkAAAAAgLEEhcq\/abvaFLtf3na1iYh83JUJD6wf1ttZreI2bdGEqM3jOYVNUgQAAAAAGAMcWajExMSUlpaWl5fzC\/yJBP9cJeGBdRtnfvRK+DCGgfHPVSYll0gCH7NJfgAAAAAAzs6RhcrcuXN37NgRGRnZ3d3NlrUWD36R4hneEcGT5yx\/aNPQ32vInGk6+DoReca\/IZ0Ra5P8AAAAAACcmpULFX9\/\/4KCArY\/K5OTk1NeXl5eXi4MMv\/93\/99u0WvxUC4oUrMlORhvffq8Y\/Yo5UJP3iJeybPypkBAAAAADg7axYq\/v7+r7zyyr333stHEhMTFQrFyy+\/XFhYGBkZqdFo+r8rMTHRzc1NnBXLG7VJbL4KEQ1rABjDahVX1QC9BgAAAACAQVitUImJicnNzSUik8nEB6dPn67X67Va7V\/\/+tcrV66o1Wp+Xgp7wLJp06bp06evWbPGWmlY19GLHydVhLFaJXjynBGcgdUq45\/daeXMAAAAAACcmtUKFaPR+Nvf\/jY7O5uP+Pv7T5gwoa2tjY8oFIri4uLFixdHRkbm5+ezWkW0VQovqSKMbQc53AWLGfOZT104hfHeR6ydFwAAAACA07JaoVJRUVFRUdE\/rtfriejChQtdXV3CuL+\/\/6OPPjpnzpzbzWARlU+bP7pJN33clUWLWof73q5DbxJR6wPxNsgLAAAAAMA53eWoC1+4cGHFihWDH6NQ9N2KpL293VYJDarepB1H41h79xONKw4\/NIw3X2vv0WldVZqJUZupbNTvBenq6iqRSKRSqaMTsQ5n6o4z9YWcqzvO1Bdyru6gL6Ll6urq6BQAwPFsXqiwYqP\/MLChYJNehA4cOHDgwAGrJTccrxtjlXc9HO+R7uZy94a575Vfzb7ze27xuFRUrdJQ0MKwr\/fZLkP78PDwmDJlChGZzWZH52IFztQdZ+oLOVd3nKkv5FzdQV9Ey8PDY\/LkyXV1dY5OBAAcyYaFSv\/hXmwY2NBlZGT0eUt7e3tHR4cVkhuROqqLfzSdiJR3PTysfz05jlPTy9VhrzaEb\/p2x+geA8ZxHBGdOnWqu7vb0blYgTN1x5n6Qs7VHWfqCzlXd9AX0eI4burUqY7OAgAczLZPVL766iu2KrFarZ44cWJ1dfWw3l5dXT3c2sbWKpr3RPgleI73MRqNw3qjyWSi\/\/tbz\/f+48b8X1\/5+CUbpWcfJpPJaDQ6x38Lybm640x9IefqjjP1hZyrO+iLaDnHoyEAsIRtd6bPz8\/X6\/WvvvpqXFxceXm5Vqu16eXsIPvEC3+98B4RPTxp2KsVXylOJSK37y8Yz\/WdewMAAAAAAEJWfqKi1Wrj4uKEEfGvPjxcV8ztRORztzLhgY+DJ88RbmB\/R8YPkrhn87hnt3fkRtssQQAAAACAUc+2T1Sc0q6z\/0NEKSFvj2ALyJ4L2h6d1oVTTHjilzZIDQAAAADASYi6UFHc4ubmxiJubm5iaLO96hl+Z5VBjueXWXRzc7v2p7VEJNU8PekH68XQl+G2hX0Z8Bj2UtgWHoa47eLCWyOGfKwSl0qlosrHkrhw3Vgx5GNJXLgMrhjysSQukUhElQ\/uC2tjeWIAIJEXKrm5uUVFRUVFRampqSwSFhYWFhbm8PZO81phnkWLWiP8EgY5Xq1WC+PtudFENH5G\/KTkEjZfRST9Gkq7T1\/6t9lLYVt4GOK2iwtvjRjysUpcrVaLKh9L4vwNEkk+lsSDgoKc5u8tKChIVPngvrC2Wq2Wy4cxshoAnNK4gIAAR+cwgJCQkG3btvHLE7e3t58\/f55uLb\/IVtwSQ\/uV8I\/5AWCdN9rWfvHYgMdzHKdUKquqqth3XSwuSz3O3nhlX7r0\/BGH92WI7QH7IjyGvRS2hYeJLU5EwcHB\/bsjtjyHEhfeGjHkY2Gc47jg4OBz5851d3eLIR9L4kTE+sLvJSXOPIcY5zguPDy8traWdcfh+VgSZ305cuQIWynL4fngvvBxf3\/\/qVOnVldX22gRs\/vvv\/\/BBx+UyWTjx4v6G9vR4saNGwaD4ezZs+zTGoC1iLpQiY2N1YtseeIB\/feM7Y8qYoio7vLnmyqf6n8A+8hVVVXV\/x9cVq4YMmfaIU+rGKQvo5EzdceZ+kLO1R1n6gs5V3fQF9HiOE6j0dTV1dmiOxqNRi6XnzhxQq\/X9\/b2Wv38Y5CLi4tCoQgJCWltbXWCJV5BPPBFghW8XrOaNUYwvZ4NA5sQtdnKOQEAAEA\/999\/v1wu\/+tf\/9rc3IwqxVp6e3ubm5v\/+te\/yuXy+++\/39HpgPNAoWIdsfvlde2fE9HsexcP6403jHoikoZEeSWX2CQzAAAAuOXBBx88ceIEShRb6O3tPXHixIMPPujoRMB5oFCxmj1nXyOi9erf8+uADZEhc2avUe\/CKWSpx7EXJAAAgO3IZLJRMap8lNLr9TKZzNFZgPOw8oaPY9mp9s9H\/N6O3GhXfw33bN6k5JJrX5V07Uu3YmIAAADAjB8\/Xvg4paGhYcDDfvKTn\/z6178eN27cE088Ya\/UnEFvby\/WJwArEvUfk2j3Ubldm8983SPbhfE77j3i5uY2vrWOzVeRTo+WpR539deIp1\/D6kufX8XtfkWIWz2OfVREHsc+KuKMYx8Vccbtv49KwXF93Ht1qox\/+87x5s2bg79Lo9EUFhaWC5SWlsbExFgrq5ycnLS0NEvOoNFodu\/ebcWUAOxJ1IWKaPdRuV37dWPsnnOvEdEcWYwwfse9R1j7hlFvyJzp2VZNRNIZMeLp17D6QuJbj3+MxJ1m\/wRhHPuoiDPuTPt1YB8VccbtuY9KRX1H8GuVhScuxU2TfbZGfec39FNYWBh5y+LFi4uLi62eJMDYJOrlicW\/j8qA7aJFrUQ36y5\/wZYq7rPBxVDO45p8iIgMmTMd3pf+7Tv2hcS3Hv8gccI+KmKNc9hHRaxxzon26+Cwj4pY47bbR+XZZ5\/94IMP+JcNDQ3j\/vvTj5Y9nBD6b3URG\/pFRJGRkYOcTaPRpKamlpeX5+fnC+M5OTkGgyEtLU2lUqWnpx89evTSpUsJCQlff\/3197\/\/\/Z6enh07drB6JjExMS4ujoja2to2btxIROnp6a6url5eXnq9XqFQENGxY8eEz1X4txBRYWFhfn4+u4qPj0\/\/gzUazbp16\/bs2VNTU5Oent7S0hIcHOzq6nrs2DGZTBYYGGgymTIzM7VaLeuLh4cHEdXX169Zs0Z4rfr6ek9Pz40bN+p0uj4563S6QX7DAJZw8fLycnQOA5DL5QsXLnzzzTfPnTun1+u\/+eYbFu\/u7ub\/zRJtO3jSoz53+\/vcrUx4YP2ec1ks6OPjc\/HiRZPJNJTz9Br1bg\/Ou\/uxxI5DOeLpF2vfsS\/8Ybd7u6jiUql0wO6ILc+hxElwa8SQj4VxdmsaGxv57ogzz6HE+b7wI+PFmecQ41Kp1MvLi++Ow\/OxJM76cvHiRb4v4sxzKHFnui+MXC5va2uz+vJcISEhJ06c4F+uXbs27YmA4HsnENGmTZtOnDixdOnSt9566\/z58x988MEdP3Dfd999c+fOra+vr66uFsZPnToVFRXl4uISEhLi5eWVkZHx0EMPzZo168qVK0uXLg0KCpozZ051dXVERMSSJUuKi4vfeuut+fPnh4WFff755\/Pnz\/\/mm2+WLl365z\/\/edasWWfPnhUWHjExMXFxcX\/4wx82bNgQGBgYGhpaXV29cuVKFxeXpUuX\/vOf\/\/zBD35w4cIF\/a0FA+677745c+acOnXq66+\/nj9\/vqen5\/r1681m8+OPP3727Nn09PTHHnuM\/QP10ksvnTlz5qc\/\/WlXV9ejjz5qNps9PDxWrlxZWlr61ltv\/eAHPyCiioqKiIgIlkB+fj7Lef\/+\/YP8hgEsgcn01rex8qmEB9YlPLCeiFJC3s4+8cJwz9B9okwSEO72cKTX6j91bP+RDXIEAAAA+slPfsK3Dx8+3NDQsHbt2gGPXLJkSWVl5YA\/iouL4x9x8A8Z9u3bl5CQQERZWVnsR2az+dChQ0RUWlq6bt26GTNmeHt7d3R0HDhwQKfTHT16NDIy8uGHHyYig8Fwu4SLi4v5oWUtLS1TpkwR\/lSr1S5fvnyQ\/jY0NOh0ukuXLnV0dJSWlup0us7OTiLS6XT8G5uamsxmMxGp1WqTycSnN3fuXCIKDQ01mUw1NTV8UKVS9XmoAmAtKFRsYs+5rL3nXi9c9HWEX8KnzR81954a7hmu\/HnjeA+Z6\/1hE6I2d5VtsUWSAAAAY9wf\/vAHvt3nQ3\/CkoSY6JglS5awl7erUujW+Ks+weLi4gULFhgMBn6ndrPZ3NTUJDzG19eXb1+6dImVB0TU0tIySM45OTmBgYGszUb6paWl5eTklJeX3y4Z3iBnFo4o6+np6ZOekI+Pz\/bt21nbZDLJZDIUKmAjop5MP6rdpJsnLx8lovRZH4\/sDMZdzxP2ggQAALClsz+678rf\/9w\/frzy+B92\/\/7XL\/96ZKdNTEx0c3Pz9fXlV9ySSCRKpZKIlEolW25OWDZ4e3sL16Ab5LQKheLll1+OjIwsLCzk42vWrImMjHz55Zfnz58\/gjW+NBoNOyE7SVdXF92+qqmvr+cXD4iLi+MrMQCrQ6FiQ5srf9R2tYmIvN2VIzuDIXNmz\/njLpzCM26bVVMDAAAAIiK\/tD9e\/tObLb\/514iptLQ0tUY9Lfzh35RsMJJhUfQP6urqhnVOjUYzd+7cvLy8ffv2PfnkkyqViogkEkloaCgJRk9dunTJy8vr8ccfV6lUc+fO1ev1p04NdQgGewtrC1cx7unp6fPcZrgWL148YcIEIqqurvbw8ODTYz+tra1VKBSsFsrJyXn\/\/fdZ7wBsAUO\/bOvSt00+7kofdyVR58jOYNz1M1nqcUlQBI2\/i25ct256AAAAY9zdwY\/e\/0ZFZ8Ueyv+MiNLS0i6amrIOpnlOmkhEq159JvcXf0jPeGWQMwjnqBDRwYMHp0+ffvToUa1Wq9VqQ0ND169ff+jQoa6urilTppSXl7OFtnQ6nU6n8\/b2Zm9va2t77bXX+pzZYDDMmjUrLS2Nr0MOHDgwd+7cV199taen57PPPgsNDZXJZO+++y5bfIyICgsLR\/CIQ6vVnjx5kmVSU1PT0dHh7e1dXFxcXl4eFxcXHR1dV1fHRoIVFxd7e3snJSUlJSXxHRnu5QCGSNTLE8fGxvLLVoxSD0+aw4Z+dd5oW10RJlzPZFhkqceJ6Orxj0wHX7dmfsPHFo2tqqoacV9ExZm640x9IefqjjP1hZyrO+iLaHEcp9Fo6urqrN6d\/ssT8+0pU6Y0NDSoNTN++ptny353QDN3xg\/XPrHj5Q8vnNRvzdwaHR1tyXVjYmISEhKysrJG6UCpnJwcImJrFg8OyxODFYl66Neo25m+f\/tU+3d73HqO97HkPIbMmUTkPvPHbL6KA\/uFnelFG8fO9CKPY2d6ccaxM70443bbmX6KAIt802Hc\/uv3Vy\/72Ydv7U2NfnUSyfeV7AsODrZPPqISExNTWlpaXl5eXl7u6enZ\/4EPgK2JulAZdTvTD9h+3RjLGrv\/68IPZy0b8XmCjvzc9Vq7C6eQpR5\/+L\/ipz\/2uEP6hZ3pRRt3mh2phXHsTC\/OuDPtgI6d6cUZt+fO9P39bPXPfvjDH2rCNSuXrHr11Vetcs7i4uIlS5aMrscpxcXFixcvZpPmly9fjiFeYH+iHvo1Snem799ODNo2R\/bdEhz1Ju0vjywa8TlNE++\/Z\/nvicilvaE1L8H+feGwM71Y4xx2phdrnLAzvVjjHHamF2vcdjvTL126dM+ePbfbR7KhoWHKlClfffXVxIkT+\/xokH1UgOfi4pKQkLBr1y5HJwJOQtSFihPMUWE4jnv30bPCSOx+i74ountu4t1z\/x8RdZ8ou2LfXVY4pxsG7TTdcaa+kHN1x5n6Qs7VHfRFtDibzVF5\/PHH\/\/GPfzQ3Nw\/40\/DwcFQjlvDz85s6deqBAwccnQg4CVEP\/XJij9037DXOhb49mt+e+0MicsMuKwAAAEN29uzZkJAQFxeXAX+KKsUSLi4uISEhZ8+evfOhAEODQsVOXjfGLvnEv+7yd3PrfxG6vWhRqyUnvGG82J4bba7\/jM1asUaOAAAATu78+fOtra1PPPGEn5\/f7coVGC4XFxc\/P78nnniitbWVjdUHsArso2JXmyqfIiK+RMmLqNp07Cm2KeQI3DDqO\/e+6LHgF+6PLJGlHu816jtyLVo8EQAAwOlptdr7779\/6tSp\/\/Ef\/zF+PL6xtYIbN24YDIZ\/\/OMfqFLAulCoOEDsfjmrVXzclXkRVRbOVzEd+q3p0G+5Z\/JcVRpZ6vFv\/7b9289+b6VMAQAAnND58+fxkRpA\/PBFgmPE7pfz9UlKyNuWn9D4YVJ7bjQR3f0fqzFrBQAAAABGOxQqjsRqlQi\/hKJFrT7uSgvPdsOoZ\/tCunAKr+QSt5AoK6QIAAAAAOAIKFQcjJ+gkhdRZUgymx4AACAASURBVJVyxZA5s0endeEUE6M2y1KPeyWX0LhxFqcJAAAAAGBXoi5UFLe4ubmxiJub22hsu7q63u6YpIqwAxfez6j+MQvmRVRZfl3jh0mGzJnm8gwicuEUspe+ZBXLeE5h077QLX3awsMQt11ceGvEkI9V4lKpVFT5WBJnm4qKJx9L4hKJhO+OGPKxJC6RSESVD+4La\/P\/oAHAWCbqQiU3N7eoqKioqCg1NZVFwsLCwsLCRl1brVYPckxe3Xr375lfN8ay+O7\/umCV605zNwQd+Xl7bvS3nxcQkQunmJRc4pVcct\/yHNv1hX8pbAsPQ9x2ceGtEUM+Vomr1WpR5WNJnL9BIsnHknhQUJDT\/L0FBQWJKh\/cF9ZWq9VyuUUrzQCAExD1zvQZGRl6vZ6I2tvbz58\/T0QcxxGR0WgcXW2O45RKZVVVFfuua5Dj2Wpgv6z+r\/qv66yez\/hn33fh7mO\/4V6j3vjB6on0rdX7wl4K28LDxBYnIraXc5\/uiC3PocSFt0YM+VgYZ9tsnzt3rru7Wwz5WBInItaXtrY2MeRjYZzjuPDw8NraWtYdh+djSZz15ciRI2z7c4fng\/vCx\/39\/adOnVpdXW31nekBYBQRdaESGxvLCpXRjn3kqqqqGso\/uKxW2XjsqVPtn1s9k\/Gc4oZRz28QySbfD8uw+iJ+ztQdZ+oLOVd3nKkv5FzdQV9Ei+M4jUZTV1fnHN0BgJER9dCvsYlNr5\/v92NbnPyGUU9EhsyZ106UEpEs9bgs9fhdPoG2uBYAAAAAwIihUBGdpIowIorwS7jP43sPT5pjo6t0lb3Snht97UQZEd3z091eySXjJ3jb6FoAAAAAAMM1anamf\/pB96cflMaXdTg6EXu5STn\/+TkRZZ94oaJ5jy2ucMOo7yrb0lW2xSu5xIVTTHphP4tf\/\/r0N39YZosrAgAAAAAMkdifqDQlypsSx9y6H0kVYXRr75OUkLeLFrW+Ev6x7S7XkRttyJzZkf\/jHp2WiO669yE2JMwrucRFJsYpTAAAAADg9EbHE5WnH3RnjX885z31vUuOTcYO2q42tXSd853wAB8JnjynaFFr29UmNjDMFnov\/Z\/xwyQicvXXuHj5TXhygwun8Pp\/e4nI3PBF50cv2Oi6AAAAAAD9jY5ChTdRMt5vokvzlV5HJ2JzKX97jG\/nRVSxHet93JXp4R8\/PHlO7H4bPmXquaDtuaC99tWfx3OK8Xffc8\/K9yVTZnv9rNj44fNsLj4AAAAAgK2JfegX77f\/6amc4EJETz8gvePBTqbt2ya+\/fDkOUS0JuQtO1z3hlF\/Xf9PQ+bMHp3W5R7fScklUvWP7HBdAAAAAIDR8UTlF2oPIvKb6EJEyokujk7H3jZVPsUaPu7KhAfWR\/glzPf78Xy\/H9+8eTPuL\/faIQHjh0nj7pJM\/uXfJ0T+qte4vOd0vh0uCgAAAABj2eh4ouInKE6M5psOzMSx2q42ZZ94IXa\/nO21Mm7cOLY7pB3cvG42ZM7sNepdOEVD+Ka7f7Lb1V9jn0sDAAAAwBgk6kJFoVAIX17o7CWiHwZ5Vi6RNSXK3dzc3Nzc2I9E3nZ1dbXuOdd+\/uiST\/xZWyp1t1tfvv390y57VxGRi5eSezbPK7mk\/zHspbAtPBXitosL\/8zEkI9V4lKpVFT5WBKXSqXDOl7McYlEwndHDPlYEpdIJKLKB\/eFtfl\/0ABgLBN1oZK3dbPwpb+nCxF5u16\/b4ILEf1g9vSwsO+WwAoLCxNzW61W2+L8G489RUS75p\/fHlHF1i+2Q1+mT7k36MjPr7z+mOu1dhdOIUs9zj2TJzyGHSZsC9+OuO3iwj8zMeRjlbharRZVPpbE+RskknwsiQcFBTnN31tQUJCo8sF9YW21Wi2Xj7nNCQCgj3EBAWLcKCMkJGTbtm0Fb\/5mg2fl7Y6J3N\/T3NVrNBqJiOM4IhJtm+M4pVJZVVXFvuuy4vmfDvzFkgd\/xf9OVv79QXv2ZTyncHl2J7u067eX9G8uYm2O49jx\/d8utjgRBQcH9781YstzKHHhrRFDPhbGOY4LDg4+d+5cd3e3GPKxJE5ErC9tbW1iyMfCOMdx4eHhtbW1rDsOz8eSOOvLkSNHuru7xZAP7gsf9\/f3nzp1anV1Nbs1ADA2ibpQeWH500Xzem7SzXH89ocCvzjS+cezV+2f2wiwj1xVVVW2+weXn6yyuTLu5OXPbHQVGqgvksDHPOPfYO1eo74jN9p2V7c6O9wau3GmvpBzdceZ+kLO1R30RbQ4jtNoNHV1dc7RHQAYGVEP\/WKEVYpwB5UDumuOSEek+J1VtoQXFi1qnX3vYrtd2lz\/mSFzJj\/Vnm1pj6n2AAAAAGCJUVCo9MHXKptnTXRsJmLDrwZGROvVv3940hx+p0j76MiNNmTONDccc+EUbKr9OIm73a4OAAAAAM5kNBUq3ddvzv7IMPsjA3vpN\/Y2VLmjpIqw2P3yusufE1H6rI993JV5EVV5EVX2zKHzo5Tv9ojkFJPX\/W1C1OY7vwcAAAAA4N+NkkLlJhFR4Lttjs5jdNhU+VRF8566y5\/vOfcaEfm4K4sWfW3nHIwfJhkyZxKRNCTKK7lkPKe441sAAAAAAHijpFAZR1\/ozfwrZX4rESkn4InKbWWfeGFT5VN7zmXdmrtiv60hhQyZM7vr9rtwiknJJShXAAAAAGDoRkehosxvjS\/r4F\/2GfTVlIil1gfDz7MvWtRatKjVnrNWiOhKyeb23Gg2z56VK\/a8OgAAAACMUqOgUBGu9NXfi2oP\/v\/D7Qjn2edFVBUtarXnxJUbRj2bZ99rvMgvC4anKwAAAAAwiFFQqAxOOdGFiPSmG0TUlCjPX3iPozMSKTbP\/jN9MXvp4660\/2CwjtwftudGExF7usI9k2fnBAAAAABgtBB1odLcNdizFCGFx3g2Hix48l0YCTaI39as\/nG5Kna\/fOOxp4jIzo9WiOiGUc82XSEiV5WGPV2xZwIAAAAAMCqIulDxG3S6vN9EF74mmX2fhA8SRoINynzjGhGdav+8onkP3Xq0wv9fXkTVK+FFdkjDkDmTf7qCcgUAAAAA+rjL0QmMhHDWytMPDrCl4Nff3rBjOqNV9okXPm3+KH3Wx8Kgj7uyz6iwtqsXkipm2iIB9nRlPKeYlFzCypVeo\/6b38Xf7Llmi8sBAAAAwCgi6icqw\/L0A1K+fe\/dztMvmzrV\/nnsfnlF857Y\/fI9516L3S9nS4SZb3Tzx\/i4+6eEvG27HPjBYObGShdOMXn9Ua\/kkrsUU213RQAAAAAQv1Hwgf5ehcLNzY213dzc+LbQbIXkF5oJ\/MtAmUf\/4x3YdnV1dXgOg7SzT7xARMUXslk8dr\/8uYoHlnziz9ctEX4J7BnLUPrCXgrbwsMGiXfuXmPInElnD7pwintWvvfd4mATZMM9z5iNC2+NGPKxSlwqlYoqH0viUql0WMeLOS6RSPjuiCEfS+ISiURU+eC+sDb\/DxoAjGWiLlRy\/zeXNVJTU1kjLCwsLCzsjm+MVo3rf7wD22q12uE5jLidfyXpyo3LRJQXUTWUvrCXwrbwsDvGg\/T7go78\/Jsdz3y39coLf\/FKLhkn9RzuecZgXHhrxJCPVeJqtVpU+VgS52+QSPKxJB4UFOQ0f29BQUGiygf3hbXVarVcjqVxAMa6cQEBAY7OYQAhISHbtm0rePM3Gzwrm6\/0Ljk24fz580TEcRwRGY3GOy7tterANwd03fzxwvfav81xnFKprKqqYt91OTyfEbTfffQs+8XmNK7unnRpkL6wl8K28LDhxsc\/u9Pl1o4r4\/\/2ZttnH1r3\/EQUHBzcvzvWOr8948I\/MzHkY2Gc47jg4OBz5851d3eLIR9L4kTE+tLW1iaGfCyMcxwXHh5eW1vLuuPwfCyJs74cOXKku7tbDPngvvBxf3\/\/qVOnVldXs1sDAGOTqAuVF5Y\/XTSvp\/lK7+yPDH0OGOIaxMp8e28VMiD2kauqqmpU\/4ObF1HF72rfdrVpz7nX2LphduCx4EX3R5YSUa9R35EbbcUzO8etYZypL+Rc3XGmvpBzdQd9ES2O4zQaTV1dnXN0BwBGRtRDv0agT2WyLuy7iStNiXLsr2KhpIowIuq80UZEPu7KlJC3ixa1TvEMscOlTYfewFrGAAAAAGPKqC9UhOsQsypFuHjx2hkefhNd+G1VZiskBBaI3S9f+8Vjrxtjl3zizyJZjx0sWvT1HIU1n3IMiF8c7NqJMr5cmfjDdFtfFwAAAAAcYtQXKnwH+Pqkie1nf\/O7uFKwa+QUbrAdJGFY+DXBiMatm5Fvtx3uu8q2tOdGs6n2bg9H4gELAAAAgFMS9YaPyokuRD0jfPN3637RqmnuT6i+W67xf+Z6fnj6qjVSg+8kVYTJ775\/S\/if2DaRbVeb\/s\/41WvVq2x60RuCmSpetzaLvHairKtsi02vCwAAAAB2M+qfqPB+caRzwDhfpYAttF1tOnn5KNs1koh83JWz740qWtTKT7u3tY7caEPmTCKShkTJUo\/b56IAAAAAYGvOU6jw4ss6mq\/0fqE37z4zwMMTv4kY\/WUT2SdeSKoIi90vf+bA94goL6KK7RFpH4bMmZ171hIRahUAAAAA5yDqQmWW4rYb036hNw\/yxtkfGeLLOjq7\/zXT\/o9nr7JJLMIpK2BdbVebiOjq9a7Y\/XLWtuejFfP\/fc4erchSj0+I2myfiwIAAACAjYi6ULmjXxzp7L\/FCs\/Uc5Nv\/\/HstcFrG7CupIowvamBiPIiquw2z56IhMPAvJJL7vJ5wG6XBgAAAAArGt2FinAl4v7eqDb1D6JcsZvkI7NZg82zt1u5YsiceaVkExG5cIp7frpLlnr8nlUf2ufSAAAAAPD\/2bv3uKjK\/A\/g3+Eyw3A7Ksg0wgzhDSPCnMELUpqZLWtmhuFlu2\/R9isrdbfapbJfrrm7VraV\/rJl2+3urYjMjLIyTCR1wEuIF7zOABPDRYfLDAMM\/P544HgcLgIDzJnh83716vXMd8458zyN6\/LluXz7insnKnSlXEVobX4dERlSFVvmDO3PHsElj+zSmKyGBV9HUFu6kjG7bNqI+f39ubaCr1nRlaq3ZhORj2JsaNqB0LQD3N0b+vujAQAAAKBPuH2i0jW+UH2usYHfncIaKFQ\/ACqsJY\/uim9qaUzeoWCF7Ylo6fX\/97Tm3wPTgeaa8orVE6vWz208n0dEvpFalrH4xc0ZmA4AAAAAQO+Iv45KV7qzjovPVVoLQRL9\/GvD2unBRLRME9Dh8jDoDyarIXmHIkyu2jBDl3DV7azoyrf69zNOv9XfH91sNpo\/fpSIvDgld8873pwycM6LgXNetJuNLZ8+1t+fDgAAAAC94K4zKgu2X+AzEFbbsfubT+4aI78utNPzxKBfsXSloHIvEYXJVfdEP58xu+zGEXcOzKezSpFV6+fyte19Hvr8xPR\/+j+8dWA6AAAAAADdJOoZle5qoS7O\/uIJd7OMG+YRA3dbK\/a1ZiYbZujC5Kpl129Ydv0GIiqo3LvuyJMmq2HDDN2\/j\/5FZ9rZH5\/ebDYSEattz8Un+976F1bbnojsZqP5P\/c2W8398bkAAAAA0H2D6+d1VXqZcGvKFZeWQX9jG1duUd1z1+ilYXJVbMhU\/nCwtPiPTFYDv7OlvxR9Hy0r0+l0fne94Rup9eaUw5Z9R0R2s7Hmi+ebio\/076cDAAAAQCcGV6JCRJtPWBdGy13dC7jMd4aPvjN8FCZXWZtqn9b8p9xqIKIZEQvZQWG7ijebrPotRWtbqPmKj+o1tomFiPw0dwUmPevNKYfc9y6LNBYfNn\/wsBenZFMxAAAAADAARL1H5Yagi0R0lVIpk8lYRCaTddj26yTevv3Pg5d2z9vsV76+T9q+vr79+vyBbF9xLOylsC28rIu4yWqoabzw8qFF\/zrx9FtHnkzeofjw5F+JaEbEwoVjnv5stpGfbOnd87sZr8\/\/tOa1GypWT6x87abWs8IixoemHRj2+Lahj2\/rv891Pi78asTQnz6J+\/n5iao\/zsT9\/PxE1R9n4lKplB+OGPrjTFwqlYqqP\/heWJv\/Cw0ABjNRJyq8tLQ01oiPj4+Pj2\/fjo2N7TDevi3cqSLzvvL1fdLWaDT9+vyBbF9xLOylsC28rEdxk+Jg8g7Fwz+MT96hMDQV8JVYbp40u0+e33W8xVZn\/vjR6Oyl0dlLqz99mojYVpbQtAPBv1vff5\/b67jwqxFDf\/okrtFoRNUfZ+L8FySS\/jgTj46O9pg\/b9HR0aLqD74X1tZoNAoFqggADHaSqKgoV\/ehA3FxcWvWrIn4zzwiKq6xL\/458Ny5c0TEcRwRmc1mYduQqkja0Vhca3eId3E9+5RcY8OC7ReueL3zbY7jVCqVTqdjv+vq189y+VjYS2FbeJkz8dSRr01V3s7\/IXnh5zuPVu118vlEFBsb2344nV4\/5x++kVq+D3azsXbbC\/7V5\/pjvD2NC78aMfTHyTjHcbGxsUVFRTabTQz9cSZORGwsJpNJDP1xMs5x3OTJkw8dOsSG4\/L+OBNnY8nOzrbZbGLoD74XPq5Wq2NiYvLz89lXAwCDk3skKl0f6mVIVSRsquh+ifq9i0LZNnqWqDjf2ytiP3LpdDoP+AvX5WP57Le\/SiQS\/mXyDqd+5daL4bDNKtLomwJuWe7NKfm43WxsrjLUfrfWXn7amS71msu\/mr7lScPxpLGQZw0HYxEtjuO0Wm1BQYFnDAcAescTNtNfKqjSPZIrXwLiNf\/rq1jj3ujn7xz1BCsc2e+HgwmwLfUNJ35sOPEjEXlxSv8bH\/GLm+PNKb055dDUTewyu9nYeHZ\/7Y5V2IUPAAAA0AuekKj01Nr8OlaZXhWI44nd2IcnVn2jf\/8v8R9EBsWwdCXr\/H8zz6wf4G40m42121+q3f4SS0gksoDgu15jJx17X3+H3\/V3sMvsZiMRmT94iLx8kLcAAAAAXNFgTFS2nrSyRAXcnclqWPbTjBtHJC+7\/u0wueq+cSvuG7eC7V0Z+M6w9INtweeD0lFT5VPuY3kLEQ17Ygf\/lt1srMl8vqkEpVoAAAAAOjAYExUiSthUkbso1NW9gL7xU2nGT6UZRLRmatboIRP+OuVzk9WQb\/o+88w6k9Xg2r41nN7bcPqyrIn73f95DY1g68SG3N9aqsVuNjZfKDZ\/8pgr+ggAAAAgRoM0UQGP9MzeJCLaMEMXJlclRT6QFPkAOb3bvs85ZCPc3Rta14lxytC0AyxoNxsvvnt3S32NKzoIAAAAIApIVMDTPLorPkyuqqr\/dd1Nuaz0yg\/Fm9YdecrV\/eoYWyfG9rfIrk3yu34ey1tClv\/ALrBfLK398n8bDQdd2k0AAACAgYZEBTwQW\/H16K74B69ZeXvUH26OWBQ7LNFkNRyp3P3pqddd3bsOsP0ttqNZtqNZLOJz1biAmUt9I7XeQ0Zw9\/6LBdmO\/Jqtf2wyFbmqqwAAAAADA4kKeLL\/Hlvx1bn0DTN0Yf6qMH9VbMjUW1R3D+RZxr3W9Otx4aZ8\/xse8p\/2KNuRP+ThT1jQbjbWffOPhlM5rukiAAAAQH8a7InKe78Z+sA3A1HzEVzFZDWwbSoS8vpstpEtBttc9Mrmoldd3bUesOx517LnXf5l4Ozn\/a6\/w5tTBi\/4J4vYzUav7\/\/mot4BAAAA9L1BnahEBHlHBHlvmTN0YOrTg2u1UHPyDsUTcW\/OiFi4cMzTC8c8bbIafrWcvSA7qyOdq3vXM7U7VtXuWMXa\/HZ8Sn7zBFHQdPKvMlzYkOzaHgIAAAA4aRAnKhKiFlf3AQbcW0eefOvIkysnfx4bMjVMrgqTq4imTZ95\/y+Ve17cN9\/VvesNfjt+EFm4uzdYhoz2HqYSHiBWvXGJV+DwRn2eS7sJAAAA0DODNFEprrHzWQrq0w9CK\/bdyRpTo377SPSaYK+w60JuYOXtj1bufevIk67tXi80m43EcarD63Q6XaPfMN+IOL\/r72QzLUMf\/YxdYzcbazKebTIec21XAQAAALqjg0RFq9WmpaVlZWXl5+enpaUFBATU1dWtXr06Lw+\/kQVPc7Rqb3rNozqd7o2pOWyCJSxi4YyIhURUULmXz2fcS7PZaDMbbUe\/YS+9OGXQnBdZ0jLkwQ+I1Ze8WGL++H9c2k0AAACArnSQqDz44INGozE9PX3FihVE9Nxzz912220PPvigpyYqEUGYUQHijwILk6tWTvk8TK6KDZmaMbuMBXcVbz5alVtQucflpe57odls5A8QC5ixRJ5wv7C+pN1srNdtse77yKV9BAAAAHDkmKhotVqlUpmVlaVWq0eOHGk0GvPy8jQazfjx47VarUtylYRNFf3x2OIaO5+iRAR5F9fY++NTwO2YrAY+aWFbWYhoRts0C3\/N0cq9xbUnPz+zzjW97K26Xevqdq0jIi9O6Rc3x\/\/GR7w5ZcDMpwJmPkVYGwYAAABi0ukeleHDhwcFBZ05c2Yge9OeJFh2cGfShFlZff7khE0VhlRFnz8WPIlw6dcTcW8Ol6uIqHUXfsRCIrp33AtEdKRi9zsFzxgtZ13Vz15oNhstP6VbfkonIl+11v\/GVOHaMMZuNjYc+65u1zpqaXZdTwEAAGCQckxUysvLa2pqlEqlRqORSqVHjhwhovHjx7OpFVf0kNTh\/v39EQlK6dYaa39\/Cri19jvsF47504yIRWFyVVzotPU3\/czHTVbDW4efPFq1N0yucoulYo36PPPHeUTkxSmbzUZZzK1+E5JZ3iKfcq98yr3sMrvZaDv8hbCcCwAAAED\/cUxU9Hp9ZmbmQw895Ovre+rUqczMzHXr1gUGBrL9Ki7oX0wYtVBlYXJITIbDW5WFySdP14wdFdT+re7A1hRw0uaiV1nVyDC5auGYp\/m1YWFy1V+nfC680mQ1mCyG2JCpBZV7w\/xVm0++cramIMCHK7caRJXJNJuNRGQr\/NZW+C215S3ew0cF3vo0y1v8pz3qP+1R\/nq72dh8sdSS+17jmZ87fSgAAABAr3Sw9CszMzMzM5N\/uWTJkgHsjyMJ50cSIqLEiaE5By5tVmHTLGNHBbV\/q8cfQRQR6OVsR2EQM1kNrDwLHxkRMOrR2FfD\/FVE1HqYWNuyMSJ6YvybDre\/fOBum90iqqSF2vIWe\/lpfi8+EUmk\/gEznvAdnch25HtzSi5SK7zLbjbWZD7fVHJkoLsLAAAAnsUTjidWhwc4k6i0ECWMkL6eX9eHXYJBrrTudBdHG4cHjC6pO7Uk7o0wuZrteHlj2m7+3fM1x94tfK64tuiizTQgne2ZlgZL7Tf\/oG8uC8qn3CsdlegbqSUib0455P5Ly8PsZuPF\/9zbYjUPcD8BAADA3XnC8cSq\/t\/EAtCHSupOEdG6I08Jg0\/EvckWj0UGXbNycutqRpPV8J\/CF\/aXfT3wnewR688fWn\/+UBiRjr5BPvketmAsZNl3LNi6VCzn3cZzB1zRTQAAAHAnbnA88RXJpL1ZuMXOI\/72vO3WSBmK04PLCRePybz9H7n27zMiFobJVX\/WvseCJqthSXbCMNlVYlsh1qGGU3saTu3hX3J3b2BJS4dLxYjIbiqq++FNe+X5ge4oAAAAiJXYjyfuDsVwv97dqEoviwjyvjVSFhHkbUhVqNLL+rZjAL1js1v4vOUW1T3TRiTHhiSGyVVbkorZBSarYcXPd7pFxsIId7kQkfeQ8MDbXvAaMoKlLkTkzSmlY6YJr7GbjWdkMmnzhw26z1oacSgfAADAoOMGxxMzDhtRVCP6ZrmXsM5jylj51pP4eQjE5TvDR98ZPiKiMLmqobn+7ujnZkYsDpOrNszQ0eXlKd2I\/WKJQ+rCeAWG+k971HtoBJt+aSSSzXhKNuOyNXJsBqb5YmnDmVxb4bdsxz8AAAB4HrEfT8wbgI0ofNJSWZhMRL079Rign7D5k\/VHlq4\/slQikbx90wF2mFjG7DI3TVfaa66tqN2xirU5jouOn1ZQUGApO8tKuzjMwPhGagNmXDqTsHUDzO4NjYZDruk9AAAA9ClRH0\/sd\/+E5l9rhRGZTEZENptNGFSPCBDGe9rONTYkKKVEtGXO0IoFE\/j6ks4806Ht6+vb5890VfuKY2EvhW3hZWKL83+KRNKf7scf3RUvk8lGB2j\/OuVzPl2x+FbqaK5q6GjDhVMi6aczcd\/6Kt\/6KplMxkq7tL++ocU74NY\/+StGNiuubd0Ac286\/502XzCYP1liN5e6fFyMn5+fOP879yIulUr54YihP87EpVIp\/x2JoT\/4Xlr\/59\/2\/zUAMJiJun6I1zB\/SXDr\/82z\/CE+Pj4+3vE3x6pwf2G8p20umOMfpRbM27z20vQePaf04G2dXaPRaHrXNxG2rzgW9lLYFl6GeN\/Gj1btTd6hSN6hqG42hclVV\/tcv3Gm\/o2EnIzZZeyfd2bo3pmh2zBDt2GGLj4+npVzEU\/\/rxjXaDRdXN\/SYKndvnLM8fSK1RPZP9HZS0PPfc2Wh3kNVQ19\/IvQtAOhaQeC\/rhn2OPbglNe81FeM\/6GW10yLv5\/OwP8uf0Rj46OFv5V4PL+OBOPjo4WVX\/wvbC2RqNRKBQEAIObJCoqqn10xYoVU6dO5V\/u3bt35cqVA9griouLW7NmzVjuFXux2TuCI6KNmeeXpOVxHEdEZrM5cWLotvdbt97qSyw33ZXL4kTEX9PN9rb5ygnDmtmj\/Jcl8n3I+LrsTysLOrt3T2bidTN2sPbLz45ePC+SiAqOm2PHcSExGQ7XcxynUql0Op2fn1+v+ymS9hXHwl4K28LLxBYnotjY2PbDEVs\/uxPnOG5S1C3Fp0tnh\/+BiML8VXxa0l51s2m36dP\/5L\/E7pU1BLOlZeIZF8dxsbGxRUVFNputd88Zqh5X0ygJuPkp38vPGXPgW19lKTtT\/enTQxQRF\/TH+2NcRMTGYjKZXPXfsw\/jHMdNnjz50KFDbDgu748zcjQNBgAAIABJREFUcTaW7Oxs9lt8l\/cH3wsfV6vVMTEx+fn5\/HwLAAxCHSQqK1asGD9+PF\/hkdV\/PHz48EDmKnyiwkdYosK\/FCYq5Nx+ki1zhrKlX3R5opKzv2LuA7s7vEUd7n9wZxL\/uetWa1miwvzu8b3f7PpVeD37kUun03nAX7ieNBbyrOF0OJYwuYo\/HOy+cSvmjXy8iyeUWc6\/uG++yWoQ3uUq\/fHVeHHKZrPRZ0SsnybZmxvRWQJjNxvtplO136whiaRPNut70h8z8qzhYCyixXGcVqstKCjwjOEAQO90UEdl\/PjxWVlZ\/BlfeXl5WVlZSUlJoq2j0k+62L6vL7GwhjrcX19iUY8IEL77+P1jP1k\/1SGzAnAJYb7xwfGVHxy\/9OuGMLnqrtHLvCU+bx158sVJW8eHTlP4R7LDxNiNJot+xb7kge5xf2JZR1NpQW1pAR9k2QuRhLv7bZa6sO0uw8bcyC5oPWes6nztt6+i0gsAAMCA6bSOyiAknE4hInW4f2Vh8tz7dwuPRWbWrW79RezBnUmdTeYsnhe5eF4kjg4D0TJZDf\/3y3LWfml\/CmssGvP0KO56bdgt\/JFil91i0e8q2bK56BUiunbY1KNVewe4z\/2hbc6kxfHEZImE+93b7KBkIvLmlEP\/8KnDvZfOSj77c0PhTvvFkgHpMgAAwKDgmKjk5eUdPnw4KSkpPz+fX\/qVlJR0+PBhF9dRuXzWYvYtI4QvKwuTnUwJSiQ+YzoIS6ZODG2fqAhte2+aQyRxUijf\/t2dkZ98jl\/BgtvYVHRpveW1w6aGB46+QXknEcWGTCWiMH\/1wjF\/WjjmT8Jb2KRNSe0pXy\/ZvrKvjlT8ZLNbTVb9wHa8H7Q4pi5enNIn5GrpNbd4Dwnv4KzkmzpdVseKV3q3bKKfP6Bme2eXAQAAgFAHMyorV65csWLFyy+\/zEcGfjP9FXFBjgcXrlut7d1Sq60n6xOUUgnXWt7+tXeO\/\/EP484Z6q5WBRC1\/HlJzOYv9PoSS2Vh8odbzy19MZ8uz5pU4f6GtpVg7b31shaJCripo1V7j1bt\/Vb\/gTAYJlfJfQINtSdHBl9337gXY0Omsi377N8snxFiS8jWHXnK5ZtenNdsNjaYjQ1ncoXBtpVjRETkLZWNu9knPNZn+GgiYskMEbHilf43PeZ\/02P8jXazseaL55trylGzEgAAoEMdL\/0SW1rSmZz9Fapwf3am8B2\/iVg8L3LsDV9VVvVs493Wk9a104Of+7p884NERE1NLSExGetWa69WtWYjbN88Ed2bcvXSF\/PV4f7CORN1WwcABgM+3zhlPrRi3518XLj\/PkyusjTVJijnzB\/1FFtCxm994R+y\/ew78Yrf\/FSaccb8i79P0NGqvWLYwd8Ll6UZ9gbb0Szb0SyHa\/hdzk3yEHniQ95DwtmKsiH3vXvpVrOx+WJpbdbf7JXnL0t+AAAABiu32aNyxcr0\/nJvInpo8cg164\/1+OHpZfy2E2ZJWt6StLyDO5PaJyFTlFLqBJ846Uss\/I2VhcnT5+d2dguAZxDmGKy9U\/\/hTv2HLLJy8udh\/q1nJbPU5fcxq4goLuTGzp72q+Wcv7\/smtG\/fHh8VYPd2kIt\/TuAAWG\/WFr71V+FkYBZy33CxrK8xWEbjN1sbCr5xfLj\/2HrCwAADE7dSlRSU1OTkpL4A4vFrG8nNwyCfIOnCvJuf+XhwovjY4aw44wrC5MX\/8\/eF5dfe+tNSvbu3fMjt+\/qw34BuBnh3Et7t0f9YWJYUpi\/6te6s3Gh06gtmSGi0ZGTZkc+1OFdJqvhsR8nN7e495aPup1rHSJ+8Qtk0TfzqYss5lJ5SrvZWP3x\/yBvAQCAQcJtZlQGjP74hS7eXbdae3bnOWo7oZhPY2prm\/jd\/Kyx+LFcIjq3\/\/agQN+Iq\/yJcBI8QMe+PPvOl2ffcQhyHDc17uaCgl8MF04tHPMnb4kPJxvuI\/EtqTt1fegMtjfm09+WsotNVoPJYvjoxKqLNhNdPr3jdup1W+p1W\/iXEh9pwKw\/eQ9Ts9Rl6GOZLG43G+3GY9UZz7qomwAAAP3OXRMVh0PALunV8pDKwuSc\/a1He6nHDaXvW8s1LnlOx29QYRInDudrO06YlVVZ2Fpl4h\/rCzt88l9WH1m3WhsR5L0p5hTFDFGll3V4GQC0V91sMlkMRLS56FVhPOP0m6wxI2IhJx2eFPkAm4H5+9QdLG6yGox1Z38s2Xysap9bJy1E1NLUUPv1atb24pREFDTnRX6+JTTtAH+l3WxsKimw\/PQOir0AAIBnEHWi0lJtkwTLenaPpMefwhIP4f74Ds29f\/e296fxUyjspK+QmAyWq6jDAzo8xTgiyJuI4iYGWfb0uGMA0LVdxZuJKPPMOrYR31vi88LEjXGh01jeMj609ehwk9VgrDtz6uKhH0o2GevOuOmufWrbuM8fmuzFKX2Gj5ZPvps\/K9mbU8piZjncxRd7aTQcrD+8Ddv0AQDAXYg6URHqv5O1NmaeF+6k\/ynjNN\/mK9Dn7K8wlHZ8BvGEWVn6zo8nvk7auoDeJ1bRVIDpFIB+wRIPe0vT\/+5PobYjyG5R3X3X6GUsaQmTq8aHTp8\/+qn2Nx4u\/9HcULnx5N\/dbr9+63HJp35yiEvknFx7l2\/kxPbFXvxveLj9c1ozmQvF1Z\/\/WSINQCYDAAAi4TaJysbMyxYzsEPA9KV1VzwN7IqEKZD1XZ3Du+z8Ln1pXWe3d5GlEFGAb+sUj3TW6OaL9UTIVQD6HctbvjN8\/J3hY2Fc7hMY5Dv0oq38nnHPz7k6lYjC5KpZ6nuJ6K7RS4VX\/mo5W2E15hgzD5b\/4HbTLy1Ws2XPu7Tn3fZveXHKFssF2XWzZdfcSm2VXvhMJmTZ9w7Xsxym4dh3tsJvmn490f99BwAAuKQ1UdFqtWlpaQEBnWz8IKqr6\/Qn9f7TFBjmS2bW7uzQ4Q4P5uqCOtz\/4M4kfYllwqzWWgfPPH4N\/64k2E948dd3DmNnfLX\/9LOG2u58nL3YzLe9OL+IIO\/iGvc+pAjAfVmbaq1NtUT0n8Ln\/1P4PAnKv9w4InmW6t4w\/9bTxq7yj7rKP0pYv5Lt1yeiT07+7Vx1Qb29q99QiBabLanPz6jPz+jwgsDf\/sV7WCQR+UZqiYjlMPIp98qn3Cu87Ex9ld\/VZxoy\/txiNXf4HAAAAOe1Jip5eXnz5893bVfa8\/W6wv8Fbvz8\/LOPxwgji+dFLp4XyR\/A1Rl1W7UTIpp5g6Kzy4bIvFhDX2LJXXTZJpa7mmtf6V7WUb+1wC8lloh8p6iIjl7xegAYMPxsyU+lGT+VdvD3xhNxb86IWEiCE5NXJ3zZ2XPKLOfrm+p2lWw+VPFjsO8wt5uKIaLar\/\/W2VvySb+TjpnGJmEa\/Yb5Rg4LWfYde4vfBmPVbWkoyqZm\/DoGAAD6gNss\/eqRxImhHW5t71BY6GWzKBFB3iRYoW19V7c2rzZBKY0I8ra8nuM7ReWboO5+T4pr7C3V9d2\/HgBE5a0jT7515EmHoLfEZ8pVt6kCx8YMm8pmXVgOw\/49UfEbh+tNVoOfTPab60\/ZWxo\/OrHqtPnIgPS9j1n3f2Ld\/wkRcRwXHT\/t8J5vG\/2G8UeQUds2mA7v5TOZ+l+22wq\/paaGgew5AAC4KbdPVPSldYnkeGAXy1L4uvL\/WH+sm+Xqcw6UCydJ2JldQVKv9le2VNerAq88o5JrbFzQ1pYEyw7vu4PaCq0AgJuytzTlGL9oH+cXkoXJVVcHXztR8RuF\/GpW8oWIYkPCiGh86HR2sclqWPbTTUG+Q91x4sW3voqIms1G\/ggyIb+422XX3UZte2CobQkZy2SC5rzY\/haWydgKvrbu\/xgb+gEAgHGbROXRe0en\/f3SryFZBmIotSxJy+MLm\/DWrdYuScvjX94wcfgackxUVCP8HfbBNxWacksbco2Ov+obIpNEtKtG31Jtc5h76VCC0rel2rHUY48mfADAXfAph8lqMFkN+8taN8Kx4pU\/7N9hs9nC5KoNM3REFCZXfXzraYfb\/++XZUcqfnLfA5SZ+iNf1h\/pYIEcz3v4KPnke7w5pUMm45\/4e\/\/E3\/OX2c3G5oulDaf3Wn\/+oL\/7DAAAIuQ2icof7hu94cNTLLXgt793duIW26nCvxSeDMbfwiqfOGzEVwkSEmFykqD0FV5Wm2\/0Ilo7PXjrSWvX3U4ZKy+ra1a8niN\/KL7HNWEAwFNUN5tYw2Q1JO+4tC\/u9zGrhskUU5VziShMrvrfSZ\/yl720f4Gx7szAd3UA2MtP125\/qbN3A29b4Xt1PF8ZxjdSG3DzE45PYKcC7N9Yf3hbS4MLznoBAIAB4DaJSl9JnNhpYccWc8ebSYRHdTX+bPBNUO\/95PgN4dIrflaCUkpEu0tsKWPl9mKzT0xYr7oMAB6LHT5GB1vPSjZZDdeFJL40OSNMrlo\/PZeIjHVnK+uN64486dZzLD1S+9VKx5C3b8CMJT6KaIcZmIBZywNmLRdeaDcbG05m1+18baA6CwAA\/chzEpUlaXnCuo1C3Ty\/eNmX5c+oLk16jAi4tDWFza40NLdIvSTjJ39RXGM3pHZ6VpjDW1tP1qeMlRfWyeMu9afjMvYAMJixVOSXyhw25cIOHFMGRCkDothqMXbNq\/mp1Q0VgydvISKyN9Z993pnb\/rFzZVdN5uvCSOfuEg+cZHjA8zGuu\/WNpz4sX\/7CQAAfcotExWHxEPfw1IqRETNHZegLrrYtHZ68PLs6ogg789uH+bwrtRLQkRsdqW4xh4R5N2duii5xobYLfXpk93yPzUAuAo7cCxMrhouV4XKR0QFXzc36tEwuWpNYha11nXRrzvylMlqcPc9LU6qP7Kt\/sg21vbilGwjfsDMp3yuukY4AxM8\/xV2Ddv6Uv\/LVw3HdrqqzwAA0B1u8NPzxszzbMNJ++3vV9RZDqM3WnMOlLe7uI46miZhK7iIKNfYwLe7iU9jvt9bP3Oq\/NIHAQB0A9uXT0TZJZ++d+xFIhouj3hnRh6r68LPtLArf6n8SSG\/+pfKn+Q+gR8cb7eAahDgjwur+\/6N9u9yd29ghym3nqQ8ZwURnSAKmk5BbfteLNlv2wq+5hMeAABwITdIVOjyfKOyMLnDa9onHkRkKLHQ5eUdDaWtkfY5j6HUQgpZylj58uzqDj9iwfYLDpHiGnvKWPna6cGq9LIOb7lpayVrFJxoYKPQl1hyDlRUFiZ3\/9BkAABeubWYrQ0Lk6tGBI5OHvkkX8tlZsTviIi9nDfycf4WluqYLIaTF3Vjh2hL686YrPog36H7y76urDcOntmY9ocpD7tlSeDYxBpJAMteiCho7sqguZdyPDb9UvvNGnuFZx5sAAAgZu6RqPDan0RMRBNmtZ4B+tqG4398dBwfN5Ra5j6w++DOJCJ65vFr2IHFqhGtCc8zj1\/jkCcsiB+SEGYnopSx8pSxl1WB7EzuolBhVuOwOyVhU4XNfmmNWcbm80uXX6MO93\/77\/HUyaHJAADdxCZbDpXvav9WmFx1zbDJMyPudqhHyV7GhiSyy+4Y+dhlT7MYCqr2\/PzrDn3NYPmryX7gQ5X1oE6ns9mE58hLghe94R1yNX\/y2NBHNjve2FbCsuHED\/W\/7Gix1Q5grwEABgt3SlQMpRY2H9KZ7FyTMFHRF1uIyHD56i91eABrDOWkRLTu5fhL15dYKKx1M71Wcdl5xCRYxNXamdrWPSpb5gwlorXTg9fmX7aga8H2Cw63nN1nJLqGiFKSwokocVLr+WNsV0wX4wIA6BGT1WAqMWSXfOoQF+5mYe0ZEYtmhC9kVSlZJrNozDMOj8opzfzwxKoB6rootFRvepK1vDglETWbjdLRN8gn30NtVSyFJSwDbn26\/SP4TKbx7D7bsZ32C8UD130AAE\/hTomKvsTCV1Dpvn+sL9w2adqTz+ezl3xNlaDAy8auL7HsPVFDE1oTFbZvnoi2nrSmjJVf8VMcKkIW19jbF4782dhw+rPjo+aPk0hbL9723rT6T39JUEoNNfbX87FxBQD6l3CVF2vvKt60q3jT5VdJbrv64cmK2fxszJ2jnrhz1BPCu2y+5iLp\/eQl8fhlY\/xOlYZTexpO7ensMoksUD75bl\/VBCLyjdRS2wHKLJPxv+kxh+v5NMZW+E1T6dGmspP91H8AALfmTolKh+u+Lrvgzk4vKC+4MyQmo7N32XYRPtlYOz2YfyvX2MgSlfOXT48U19hJeemln49E+K6htoOjwAw1dqW+kqiFqPViVbi8PtCx5j0AgEu1fHUu\/atz6ewFO3ZsROCo\/4l9ldpWkRGpNtyYxy5ga8bePPz45Ktm\/1KZY2msrqgvIcHszWA4lKzFVmvZ\/U4XF0j8guXxC3wj44mIbeintjSms1v4ZKalsd72y3bbse+JOj6vEgDAU7lBorLx8\/MxY7keHUCcs78icVLoK28fIyKHiiXPts3JLJ4XuWb9MX1pXSK1LsHq8KBhPljaUe7Be+x78xXPKWbsxdXeERxrq8MDGm+9ujHXoApCugIAYsR2whyt2rtT\/yGLcBwXGxtbebJ+aew7bMFYmFz1r5sP9uyZFkNJXdH3hk+qGyodVqP1\/RhEoKW+2rLn37Tn3x2\/7eXtN+FOH2WMNzfCa8gIIhKuLiMi6ejEoDs7vpXPZyQtzTWWAiJdx9e5Dy9O6Rc3h9Ta48qR9mttXse+bT7wgas7BQCu4QaJiqHUUlvbRERDgh33jThoaGwmoo2Z59m+eR7LWxInhjokLWyfPRFtyjzf4QPX5tXmGhv+mV+3VBNQf3kasjy7WrgkzGFX\/daTHRe5L66xjzTXUwRHRIf3lY2frPCdopYE+yXUHO96aAAAonK2uuDRXZf2+LGZFpZm3BP93JGK3dPC7zp+Yf8wP2Vk0Lgg3xBqO46MXcz2w\/xGfX93PovPXn6tO7v11OsldUUXbeUeNWPTbK\/Pc9xQ1J6vWiuNvsknbAy1bZUhwRozIiqliUExDwZ1cru9bRlb88VSIrJXnW8qP2MvP20vP91scTzT0lVYluJ\/4yNE1EAkkZL3pPu8wsc3Zf7R1V0DABdwg0SFiJY8pzu4M2nVn+P+0eV5vr+aOk4PhNMmHV\/QSXkWtm\/ktbzapZqAtD2O+91Zzcfl2dVrpwcX19gjAr06esZlEjZV0KaKysLklmrbke\/04ycpSEI+MWERQUXtL85KHpaUUXXFZwIAuJwwVfjoxMtEdKTypy6uZ9lFmFxVWW+8d9zz28+lK\/2jUkb\/Mcxf1ba6jNgFdGm9GYXJVXGh07rowwfHX9pr\/NL54YhToz6vUZ\/X2bscx0XHTzucs7P5quukI6f4KK8lIn5+hv833+hi1Vl7\/LyNvfx0Y\/HhxuLDzdVl\/VFtxjdSy7IUIUn4eK9xtzYf\/7ZvPwsAxM89EpVu7qE3dFkOUh0eIJd3sMJKmKWw3IO1t5608vEOy6QkbGqdn2F7WrYW1S\/XBra\/t72jJ8xROwoO5FXf27axRRIs27swZOrmSiJ6dmLg78bJh\/l5EVFENyrfAwC4ndbSLlYDEb137H+JqMJa8ktlp7vVHUQFx44bOnEkF3f8woHpI1KIiB1c9qcJ\/6YJHX\/cTv2HP5VmuP3cS5d866uopaXx3IHGcwd6fLOXj1dgqHR0ovfwUT6hI1tj7eZtfCO1fvELevpse7t8hs3qEFFT2Qm7qajh7L7mmnIi8rtuTodPkISPJyQqAIOPeyQqfC4RG80585zNGxK7viDlqwu5i7qae+lQN08G4z372E9b5gxdcn0AH5EE+6mCbVcHe5+rtgvjAADQ3tnqgrPVBaz9veET1mCzNOEBo+8c9YS9uVEZMIqfnwmTq+6OTrs7Oo1tj\/ny7IZfqvbUN+GsRYHmpubqX+vzP+v2DRLfSK1vRJzXkBHeQyL4KJvDIcEEjkPbIdLNiR1J+PhudwwAPId7JCodar9ea2Pm+XWrtQ4bVHiqTrbjdzYPY+jhVEb3Mxw2afNpUf1fqm2SYBkReQXLmomenBCwFocUAwD0CpstKak7te7IU+3f\/d3Yv9w1eim\/PeayG6caiOifhx47fmH\/wHTVI7Q0ntc1nu+zvfveQ8J9R04JuGWZxEfWV88EAHfnHolKay4hoSHB0q6v7PAM4soLDUSUcrvqih\/Uu3VWy7OrI4K8VYHeEUHea\/Nqu1kRZakmwPquziuC80uJXXnQmiajBKV0ueaya1SBWPoFANAHPjn5t09O\/k246T9l9PKJ4beMDtCy4OqE1s0tbNblTPXhHefe9eylYqJiv1hiz\/+spckWNOfF9u8278fBXwCDkXskKq2TIc1X3hbfoTpLExGNVLduIDlnqLtadWl51Z79pg7vKq5t7tGnsHmSn42NPbpr8qunD6fE\/vbmEZRzIiLIOyXosiVkHdZjAQCA3hEmHltPrf22\/N3Y2FidTsd5hRHRyimf8wcux4ZMnRv1P8K7hMeL\/fzrVyOD45rJfqAs61jVvjPVvwz4UDyT7ch2v+vmOKwHayk5jJ30AIOTeyQqrSRXrvnYHT\/nVwgTFYczi3shZaw8Qdk61dO+IH17W09aH7nOf9ywjv\/jF9fYo6ZFlIYNGf7NseWaAOGpxwAA0B9YBiI8cJmIbo5YND085bqQG4THjrHG3KhHWSMu5MbOnvaN\/n2zrfxwxW6b3ervE4jJmW4yf\/yo\/42pgWMTfYaOsNlszaijAjCIuVWi0kfOF3d1OBiv65O7hPiDibt\/yy8VjSxR8QqWEdHcB3bnLgods3Sy9V3dqN+P947g1NU2a9ssDQAADLwfijf9ULypfVy4foxNs0xSJGnDZin9R1Lb+WNEdG\/081f8CMEUzfaRwePr7XV+3gGldadHBIz68tyGi7byoov5fTgid2H5Kd33yJZYrbagoKDJZnN1dwDAZdwjUen63OG+tWD7hSlK327uM+m15dnVCUppwqYKdbg\/ERVmz67++LAkWOY7RcXq1rNN9vxEDQAAiIRwboS195dl7S\/L6uKWGRELrw66Nir4OhIUvqTLpmj+hw+yCxx2\/LfvgMliKKjK+cHwSUV9ae8GIk5hctWMiIXXDkuM9Btru862pyzjC8Nbru4UALiGKxMVrVablpYWEBCwd+\/elStXDtjn5uwvJ0FhFoelX7nGhu4s3xLid7P06KAwvgwLESmG+52aOmoMkdVOvpdfZkhVJGyqwJZ6AAD3tat48xWvaT9REyZX+Xr7qQOjfxv5EBEJT1tm\/44NmbpozNOXPWVmVx\/Bzglgj8o3fVduLd5X9nVTcwNdnn0Jd+MMMJalLGwbVJCM5qmfGMdN+kfBvS7pDwC4lisTldtuuy0rK+ubb7555plntFptXl7HxwrrSyyJEx2DzS0tE2Z19eurLuQcqNiYeZ5td5l7\/+7ePUSIzyJ6MQ\/DH7KcOCmUiIJvUPNvSX8zpuGbIsLZXwAAg0D7iZrWA5dri3J\/3d7FjU\/EvTlcrmrytoYEKmSNHJ+KsHf5SRvW5l8mRT5IRPeOe6H7HTNZDLm\/fqmvOT4iYJS+9lhxbVFdo7knQ7yya0OmLnRIvYjGcZNvCEveY+rgVE8A8Gx9nKio1eqVK1fm5OSkp6ezyLp160aPHk1En332GR9k2CyKVqslovLy8h590OYv9L3o3qtvH\/\/bW4UkSA+c30lP3dtA3wU+a+L9d9PZBxdF+cSEsURlitLXyY8AAABP9daRJ4mI4zh2gpmtG5s6hLM3EpLEhiS2UHOA7xDt8FtC\/Eb4esmEeY7wLIEuFqRdEZsjcohcalsMjc224fKIdvcREUVzk5CoAAxCfZmosCzlqquu4iOpqalKpfK5557TaDRJSUn5+fkO0ybz5s176KGHDhw4oNf3LPFQj+hB+Xa2xUVfYmFZChF9+qXhWcHqL+c5M+Ox7j9FLFHRl1jU4f76EsufVh58cFEUEUmCZS3VtgVj5f29ZwYAAAYPYYbQQi2\/VO5h7X2\/7ujpoyQSr6vkkRMVSRKJJMCHGzd0EovzqQ4J1qo53Osw29PFp4zjJve0YwDgAfosUWEpR2VlZV3dpR+px48fbzQa8\/LyysvLExMTNRqNSqV66KGHfH192QRLZmZmZmbmihUrUlNTHeZb+pC+xPGn\/Lu6UfyxR4QbTnrq+KlqItKXWCbMykq9e1T6x6epLWmZuqkiZ3YQzv4CAABxamlpNlrObjv7dp88bcMMXdcZCwAMKl599SCz2bx27dq33rp0NIdarQ4MDDSZLpVTVCqVmZmZt99+e1JSUnp6+rp161JTU4koLCyss8fq++68L+HRYQN5jFh3hMRksC03LEshojXrj7EGm6tBrgIAAB5vc9ErHca\/0OPgL4DBqM8SlV27du3atat93Gg0EpFer6+trXV467\/\/\/W9SUlJWVhYRdTadwv+83rfaz7GIDVsMdnBnEnt5eN8dLu0OAABAv9tVvLmgcq9D8Lh5HzaoAAxOrjz1Ky8vb\/78+V1fo1QqlcoO9pGXVdplMlk3P0h3pIaIDL828reowwOIyNSThzjD19dXKpX6+fn14t6oWVd7qTgimjUtYve+nh050B+cGYsIedJwPGks5FnD8aSxkGcNB2MRoZcPLVo45ukJV900TKq02VBHBWBQ6\/dERalUUkfLwLrpoYcfSrkvNlhaQPS1MM5xwfHx8d1\/ztzUMiIv\/pYxY+Ss0aOH9FpAQMDIkSOJqKGhu4d3\/TeDEicREXmpOK9h\/kT03kz\/BfaB6G3XejEWMfOk4XjSWMizhuNJYyHPGg7GIk6nadevXvtDuJDvv\/++O4eYAYCn6sdEpf1yL7YMrEfe\/fe7P+5ruGmy9LknRgjjZnN1QUFBr\/s2RqUgiq2vtznzkO7jOI6Ijh492v2\/cO\/8rYIolIhYoXrGt\/TIwao+W63XO70Yi5h50nA8aSzkWcPxpLGQZw0HYxEtjuNiYmJc3QsAcLH+nVE5fPhqpbpJAAAgAElEQVRwUlKSVqvVaDRBQUH5+fk9fYLRaMzPPx+tjiRqTVTO6muj1IE2W73Z3Ps6U0WnW+u\/O\/OQHqmrqzObzd3\/\/w9b\/RCHSEt1\/XDfJrPZ2tdd67GejkXkPGk4njQW8qzheNJYyLOGg7GIlgdMDQGAk\/r31\/Pp6elGo\/Hll1+eP39+VlZWZ7Xnu7Ax87xDZMuXBiI6drK6b7ooVu0H7pdy3avTgg2pCkOqwiVdAgAAAAAYMH08o9J+f\/ySJUt6\/TTL6zntgzn7y0OcPgqMFaQX2yHFDkJiMioLk4URL0lrg+UqqvSyge8VAAAAAMAAcPGGh15gB3Y5LyQmY+4Du\/vkUf0nJObSgYySYMcDylLGyge2OwAAAAAAA0TsiYpSqVQqlcKyJzK\/1p\/XZTIZf7iwyNu+vr69vnfEhK9CYjL0JZaWapskWLY8u23Nm4SiOG8RjoW9FLaFlyHef3HhVyOG\/vRJ3M\/PT1T9cSYuPDdWDP1xJi48BlcM\/XEmLpVKRdUffC+szf+FBgCDmdgTlYyMjIyMjFvnPMFH1Co1a8THx\/OHC4u8rdFonHyOocQiCZa1VNtyjQ2q9LJFhaOphZ64PiAiyPvUfUNyF4cSkSFVceq+IS4fC11+6LPDZYj3X1z41YihP30S12g0ouqPM3H+CxJJf5yJR0dHe8yft+joaFH1B98La2s0GoUCGzIBBjtJVFSUq\/vQgbi4uDVr1kT8Z94deeFEVFVVde7cObZh448rC97bdJLajmJkx3aJvM1xnEql0ul07HddvXjO8kejn3vy2qJ\/7pvyrxIWL1hw6bezLUQ3b63clRLCXrK9K64aC3spbAsvE1uciGJjY9sPR2z97E5c+NWIoT9OxjmOi42NLSoqstlsYuiPM3EiYmPha0mJs5\/djHMcN3ny5EOHDrHhuLw\/zsTZWLKzs9lJWS7vD74XPq5Wq2NiYvLz8z3mEDMA6AWxJyrC\/eIsUVmSltf+RCyRYz9y6XS6Xv+Fu3he5LrV2o2Z55ektZ6cFhHknbsotLPrc40Nbx2s+6nksrMdDQ+HJWyuzF0UuvWk9dISsh5yfiyi4knD8aSxkGcNx5PGQp41HIxFtDiO02q1BQUFnjEcAOgdsS\/9Aka4S4dRBXp3cX2CUvrJ7KFrpwfzEUOqgiQSltskKKWd3woAAAAA4Hrul6i0\/5F98EicOJxv5xob8ssa\/7S7mk06FdfYiSjq3ybh9Slj5WzixaH0SkRQV0kOAAAAAIDL9W9leuhb6nB\/dbi\/vq38yx3bqlhDuEBuwfYLW+YMFd7VYVoSEeTNchsAAAAAABFyvxkVQ6moqzT2k5wDFfoSC0mufGWusYH9u7XRbh9Lg72lwzgAAAAAgHiIOlFhP2rz2EyCaoS\/i7ojAi10cGfSFa9SpZct2H7h9bzL1shtPmFljVH\/aV0e5rAeDAAAAABAPESdqPy9NIoVfBQWhNIdqWENh4pRYm47U\/CRb+ccKGcNdbg\/i6vD\/SsLkysLk8eMHNb++vwqSUvbf7TRH1x8bp9NlV6mSi+TyWQJmypY3JCqYP+snR7cV2Mh8RUOGyRxFHwUeRwFH8UZR8FHccZR8BEASOSJyvr161nBx7S0NCKaMCtrbmqZsEqUu7SdL\/hIRD8fDiQiohY+vu7l1rcWz+\/4+YsLR7PkxCEeGTfF4T91ylh57uLQPhkLia9w2CCJe0yhN2EcBR\/FGfekwoIo+CjOOAo+AgCJvI7KqlWrjEYjtRV8pI6q9blFm3O64CNrv7oiNvm3irLyen9\/n\/G3ZP\/4aYI63J+Ipsz5sehMVU+fmbsolG2p53fbF9fY2WSLM2Mh8RUO6yJOKPgo1jiHgo9ijXMeVFiQQ8FHscZR8BEASOSJSnJyMktU3B3XR3W4fH28fj0yj7Xn3r973ep4lqi8\/f6p5\/9xpNePZRkL\/5JPVzrUV2MRCU8ajieNhTxrOJ40FvKs4WAsosWh4CMAiHzpFzhobGrm29ven8YfVTwk2Km1vAmbKopr7PxpxRFB3thnDwAAAACuhUTFzfBFVBg2o7L4zsjKwmRnHpuwqSJhU4WwHoshVcGOMEbSAgAAAAADD4mKe8vZf2mN1rrV2j55pnBq5dVpwS1EhlTFTwtDDakKlLQHAAAAgIGBRMXNZOeaiGhj5nn2cslzOr69eF5kZWGyk+mKKr2MTa2wbSoLo+WsyOTVwd5EtFwT4MzDAQAAAAC6CYmKm1m6Ij8kJmNJWt75kjp9iUVfYlmSlie8YPG8yP779JSx8oIFfisiS07dN4SIZkfJur5+y5yhWDkGAAAAAL0g6kRF2UZYGcod231S8NGhnTDnxwmzslh7xISvDhyqcviv53D90tRoIvo0PbGyMPlfr07l4x+vS2DV7h2uL2\/wyTU2FNfYR39w0eHJMQFWIjKkKt65ZQirFym8lwQFvBKUUiK6KSrIId7+4xB3Po6CjyKPo+CjOOMo+CjOOAo+AgCJPFFxKPhI7apEuUu7Two+dt3+Mbe1PoOp0t7+mtKDt72w7Np1q7UzEhVENH\/2VSx+6LukpJuV6nD\/xfMi2z9zwfYLCZsq4uPjFxWOFu6zb+\/UfUO2zVfyL9lzXpsezF6OGT1GGO9wCIg7H\/eYQm\/COAo+ijPuSYUFUfBRnHEUfAQAEnkdFRR87H579owh\/O6UkJiMO38b8cPeGnaNOtyfzZkIGX+1Kq+S8y9z9lfc+9Thrj9LWG4l19iQoJSShKjl0jNPXLDf8mlrvUiz2bxlzlA2o7LtfMvj34q0ABmh4KNY4xwKPoo1znlQYUEOBR\/FGkfBRwAgkScqKPjYI5WFySExGcJzikNiMli8q9uaibxIX2JhC8muyGEsa6cHp4yVCy9gcy8JSumWOUMdgiI0MF\/NwPCksZBnDceTxkKeNRyMRbQ4FHwEAJEv\/YIeCYnJSJwYKoyow\/0dspSQmAyWvTD6EsvBY45bUHqkpM7eYTzX2MD+zQ47NqQqHr8eJ4YBAAAAQHchUfFMrC6kcMWXMEWZe\/9utmTLUGK5JeUHaisc2Quv6eriPijfetKqSi9bsP0CEbHt9eywr9fz6gy1rZnMn+MDUYYFAAAAALoJiYpHMZS21q1Xh\/uT5FJcWBeSiHIOVLB35z6w2\/kPvWBrXp5dTW2zKA5Y9kJEJCFW6h4AAAAA4IqQqHimjK8Mwm3u+tI6hwuEEyx79lcQUWVhcq\/nVXgOe1FY6sIqSLLuYFIFAAAAALoDiYpHYSu+9CWW1KcPsMbc+3dvzDzvUBTSwR1t8yrPPH6N833YetJaXGNfsP0Cn7SwbSolNXYiWtt2ZjEAAAAAQBd8XN0B6GP8PAnfyDlQ0fnlrSbMyjq4M2nxvMglaXls\/71wz32PsGVg7f3tQO36m7kEpdSQqhDtIWAAAAAAIBKYUQGitqkYuuJZxk7Ydrr+u\/Otp0waUhVYAwYAAAAAXRB1oqJsI5PJWEQmk7lj29fX1+V9uGKbz1WY99+6weGaysLkysLkLe9M6vo57KWwzb\/81y+XPiJ3Uehfp4V2fT3iPYoL\/5iJoT99Evfz8xNVf5yJs6Ki4umPM3GpVMoPRwz9cSYulUpF1R98L6zN\/4UGAIOZqBOV9evXZ2RkZGRkpKWlsUh8fHx8fLzbtTUajcv7cMV20fnWY8JYxjJnZhjLTNg1\/ExLfFxQWIh3F89hL4Vt\/qXXyInChWEPRHt3fT3iPYoL\/5iJoT99EtdoNKLqjzNx\/gsSSX+ciUdHR3vMn7fo6GhR9QffC2trNBqFQkEAMLiJujL9qlWrjEYjEVVVVZ07d46IOI4jIrPZ7F5tjuNUKpVOp2O\/63J5fzprn8mdybamzL5l1Idvju\/s20l79cJ7H+\/tbCzspbAtvIw13r11yK2RMuEz+V0rHV7ff3EiYrWcHYbT35\/bH3HhHzMx9MfJOCuzXVRUZLPZxNAfZ+JExMZiMpnE0B8n4xzHTZ48+dChQ2w4Lu+PM3E2luzsbFb+3OX9wffCx9VqdUxMTH5+PirTAwxmok5UkpOTWaLi7tiPXDqdzl3+wk2cGLrt\/WkdvmWqtKe9cmHHN\/ucHMvCaL9Xp3H8y7V5ta\/nO56hPADc7qvpgieNhTxrOJ40FvKs4WAsosVxnFarLSgo8IzhAEDviHrpF7hKzoGKqbd\/l5vneFzYxszzYSHei+cGOP8Rm0\/U\/2C4VCBywVi5888EAAAAAI+BRAU6duJ09Zx7d\/M77PUllpCYjI2fnyei66KlXd7aXfdnXVCll7FFXzgEDAAAAACEUEcFujJhVpbwJSvJEhbirQj11pf02afM\/rxyx50hqK8CAAAAADzMqEDP5OyvICLVCP8+fOYvFU2sgbr1AAAAAMAgUYGeeePdM0S0bnX8Fa\/sETaXkjJWjjVgAAAAAEBIVKCndEdqHCJ9Vcw+19hARLmLQvvkaQAAAADg1pCoQI+ZKu3qcH9WDnLbe9OIaOaNrWW5Du5M6vVjF2y\/wBpTR\/TNZn0AAAAAcF9IVKDH0l65wLcTJ4US0asvTqgsTD64M4klMO+\/MaV3T2YLwDbfNrRP+gkAAAAA7guJCvSYqdL+1AtHhBH1CH8iUoe37rCfM2tE+dG+WQ8GAAAAAIOTqBMVZRuZTMYiMpnMHdu+vr4u70PfjmXrdsOICV\/NvX83EZUYrUTU0NhCAl6S1r0rDrfzF3QWH\/eRmdqO\/+rO9YjzbeEfMzH0p0\/ifn5+ouqPM3E\/Pz9R9ceZuFQq5Ycjhv44E5dKpT26XsxxT\/pe+L\/QAGAwE3Wisn79+oyMjIyMjLS0NBaJj4+Pj493u7ZGo3F5H\/pjLCSN\/uNL+XEzv56bWnbXYyZ9iYWlLrzF8yIdbuff6ix+vUZLRClj5UT0+uwoQ6rijlF+XVyPON++7KsRQX\/6JK7RaETVH2fi\/Bckkv44E4+OjvaYP2\/R0dGi6g++F9bWaDQKhYIAYHCTREVFuboPHYiLi1uzZs2qVauMRiMRVVVVnTt3jog4jiMis9nsXm2O41QqlU6nY7\/rcnl\/+nUsRBR7jTL7swTWHpnwvfAy\/hqHxwrjS+N8k8Ivq1WvSi\/r4npn4kQUGxvbfjh99fyBjAu\/GjH0x8k4x3GxsbFFRUU2m00M\/XEmTkRsLCaTSQz9cTLOcdzkyZMPHTrEhuPy\/jgTZ2PJzs622Wxi6A++Fz6uVqtjYmLy8\/PZVwMAg5OoE5Xk5GSWqLg79iOXTqfzgL9wuzkWtrGetUNiMnr0Ecs0Acu1gcLI1pPW5dnVPe1qdwzCr8ZdeNJwPGks5FnDwVhEi+M4rVZbUFDgGcMBgN4R9dIvcF93PHBpDdjieZEO70okXVVfeT2\/joiKa+yq9DJ2DphWgQOLAQAAAAYXH1d3ADyTvsTCt3MOlPPtgzuTLNamcaODiWjdau2StLwOb2f5CW8k552glLKKkAAAAAAwGGBGBfoLv7H+mcevYY3KwmR1RADLUoho8bxIfnlYFzadsBKRodbeP90EAAAAADFCogL9JedABdudsnheZGVhcgWrrNJy2SnGX7w37YrPeeNgHREt1wT0Sy8BAAAAQJSQqMAAkUiIiH7ca5owK4s\/yFgd7v\/mKm3XNxbX2KntwGIi8pb0bz8BAAAAQAyQqED\/Em5W0ZdY5j+8R19imTArK+dABXvr7uRItrG+sjB5+SPRHT7EUGMnIi8JGVIV5x5WGFIVN6lkHV4JAAAAAJ4BiQr0rwmzsvi2cFc9e2tj5nnWLjl4BxE9t\/TaysLk9htX\/phdTUTnH24r\/tVCHyYNWTs92JCKcmAAAAAAngmJCvS7kJgM9k\/7M742ft6aqPjJLpV35Dff84Q76eubWhpbWqhtMZghVTEnyq8\/ug0AAAAALoREBVyJbbjP2V9BRDn7Kz767Bx1VHeluMbOdqoU19jH\/Nc08l3Tgu0X+HffvoUzpCr4fwau9wAAAADQb1BHBVxvrqA65D3zo4ha2K4VYUn7n69R3ZcSldAWyTU2sFor7TOTqSOke0tRcQUAAADAvWFGBcQl5ZE9fLuyMLmyMLk4747KwuRRkUEs4nD9q7pah8hdY7ASDAAAAMDtIVEBcflhT9n\/vlogjMjl3kSUOCm0w+vfOFjnvyzRf1miKr2MzbGkjJVjARgAAACAuxN1oqJsI5O1nkUrk8ncse3r6+vyPgzYWNhLYVt4WXfi\/\/q4dYd9xtdlJGCqtBPR+QNzhde\/\/pKGNRInhspkslxj66KvdTdzCUopEaWM8dsyZ+ja6cG97o+7xIVfjRj60ydxPz8\/UfXHmbifn1+PrhdzXCqV8sMRQ3+ciUulUlH1B98La\/N\/oQHAYCbqRGX9+vUZGRkZGRlpaWksEh8fHx8f73ZtjUbj8j4M2FjYS2FbeFn34\/oSy3sZdN2Mr9mJYZnfWh7+cwURBQb4fLNpFru4sjD5vpSrWXvxnZHx8fHLs6vZyztG+W2ZM9SQqlh7E5eglKaMlUcEeTvTH\/HHhV+NGPrTJ3GNRiOq\/jgT578gkfTHmXh0dLTH\/HmLjo4WVX\/wvbC2RqNRKDA3DjDYSaKiolzdhw7ExcWtWbNm1apVRqORiKqqqs6dO0dEHMcRkdlsdq82x3EqlUqn07Hfdbm8P\/06FvZS2BZe5mT85WdHszPB2D57tmVFX2JhpVdGJnzPru9s6dfWk9aXDkkcuh0bG9t+OP3U\/36NC78aMfTHyTjHcbGxsUVFRTabTQz9cSZORGwsJpNJDP1xMs5x3OTJkw8dOsSG4\/L+OBNnY8nOzrbZbGLoD74XPq5Wq2NiYvLz89lXAwCDk6gTleTkZJaouDv2I5dOp\/OAv3BdPpbKwmSS0Nz7dm97fxoRsTr37U8JixnmU1jVRESGVMXWk1ZWdIWIDDV2CVFEkDfb0OLy4fQhTxoLedZwPGks5FnDwVhEi+M4rVZbUFDgGcMBgN4R9dIvgPYmzMqiFmJZSutLIn2JhYiEJe1ZlkJEqvSy5dnVLC0hIlWQN1sDZkhVFKcqChbgiDAAAAAAMUKiAm5GX2JhaQldPoVyRSxX2XrSympHElELERFtijn10DUoKAQAAAAgLkhUwP1MmJXFdtjzkc1fnCeiL96b1vWNbHYlYVOFKr2sqr6Zj\/9lYiBONAYAAAAQFSQq4An+vu4YEanD\/RMnhnbzlvEflvPrwZjcRd29FwAAAAD6GxIV8BBP\/\/UQESXNUF7xym3vTWM17ysLk2O31C8qHL31pJWIIoK8l2sCwvzxPwoAAAAA18PPZOAhrFY7EQ0dIu36MnW4v7DIPTvs+C8\/29jGlWXawLy7h+cuCo0I8mb5DL9Bv7Iw+eDOpP7qPQAAAABcDokKeIicA+VEpB4R0PVlLNlghxoTEb9UrDwpxn9Zov+yRCJShfsf3ncHy2cO7kwK8Pdhxx+rw\/2FB4sBAAAAQP9BogIegh0Fpuoykdj23qXSKywy++YhrMFPs\/gvS5Q\/1FoaudhoISK9bi7\/hGWPXCpiDQAAAAD9B4kKeBR1uD+b\/XAgDN7xwG5qS2wYVpUlZ38FH2yxNtkN5vqsIvYyZ3\/F3Pt3E9F9KWIskAoAAADgeZCogOfg0wx+gVb0qODKwmQ2kVJZmCzcnUJE6vhtRLQtXREfF0RES57T8eUjb5+TZfu0YMTFWsvrOU1HTX\/7y885ByrYXUtTxw7UgAAAAAAGLyQq4DnYVAkJCqq88sL1JFjWRUQffXaOz2fqLE05+1vTj2NF1SweEpMxYVZWrrEh19hQWmsvrrE3fFuUMtaP2hKhF5bFLp4X+cV709KejFm3WjtAYwMAAAAYZJCogOfQl1iWpOURkTrc\/9+vTSKia6OD2Vt8QvLUC\/nCW+596vDc1LIRE7664Y7vHJ62YPuFyRsrEjZVEFHKWPkyTcCEWVnsOetWa2+YFPrHR8ctnhcpnLHpcNUZAAAAAPQCEhXwKBszz7OK9Xf+NiJxYugQTkpE+hLL3Ad2OxSz7z5WZWW5NpCI5rZN2uhLLEtXtOY8iZNCb5oaxtrIVQAAAAD6BBIV8EAbM89T2xb5jZnn+TO+emd5djVrbJo9lIhYwjNhVtaHn56jtvVgn\/37Br7NplZwkDEAAACAM5CogAdiC8CYNeuPOf9AVg4yMVy6dnqwMB4Sk7EkTcfa+\/IrDYKTxJ55\/BrnPxcAAABg0EKiAp6JrfLSl1iExxD3Gj+pkjJW7vAWOw1MX2KZfU\/2kud0LS0tbD5n8bzIbe9NU4f7SySoag8AAADQY6JOVJRtZDIZi8hkMnds+\/r6urwPAzYW9lLYFl42kPERE75ii76cf36usUGVXvb20SYiMqQqHK7nP0hfYgnX7PjjSwUsV0mcFJr\/bVLF0daq9jNvjOjX8Qq\/mv54vkvifn5+ouqPM3E\/Pz9R9ceZuFQq5Ycjhv44E5dKpaLqD74X1ub\/QgOAwUzUicr69eszMjIyMjLS0tJYJD4+Pj4+3u3aGo3G5X0YsLGwl8K28DK3jmdLxrGGIVXx1MzoLq5fkpbHUheJhKht70qoYlS\/9lP41bjkv09\/xDUajaj640yc\/4JE0h9n4tHR0R7z5y06OlpU\/cH3wtoajUahUBAADG6SqCgxVtqOi4tbs2bNqlWrjEYjEVVVVZ07d46IOI4jIrPZ7F5tjuNUKpVOp2O\/63J5f\/p1LOylsC28TGxxIoqNjW0\/nM6uf\/H6Fn7117bzLY9\/ayKi3EWh87ZVlVma219\/JnemvsRyxwO72dKvCbOy9CWWfhqX8KsR23\/nXsQ5jouNjS0qKrLZbGLojzNxImJjMZlMYuiPk3GO4yZPnnzo0CE2HJf3x5k4G0t2drbNZhNDf\/C98HG1Wh0TE5Ofn8++GgAYnESdqCQnJ7NExd2xH7l0Op0H\/IXrSWOh3g4nQSndMmcotZ5cLGHlIItr7KzoigN1uL++xLLtvWms7mTvjkjuDnw1ouVJYyHPGg7GIlocx2m12oKCAs8YDgD0jqiXfgGIE6tbT0QpY+UsS6EWigjyFp4JZkhVGFIVM9Uytu6LL8BycGdSZWFyhBKHFwMAAAB0BYkKQG8s2H6BnVlcXGNfnl394XELEaWMlRtSFfpUBdtwT0Tv\/WZI7qJQ1g6JycjZX8Hqqxz+PqnDQiu\/XzyS1bkHAAAAGOSQqAD0UsKmiqKLTQmbKraetKbtqWF5CxFJ2i5gkYgg70fjAlhk7gO79SUWdibYwZ1JLCdhBSLZccavvHB94qTQbzfe1Iv+FCzw2xRz6m9TZFe+FAAAAED0fFzdAQA3dvPWSr7NNqiwuRThfhVDquK5yYESCb19uI6I2Glgi+dFElHipNDKwmR22brVWv5R2vHD2M6WbnZj7fTgMUNb\/7ecMla+Nr+Oz5oAAAAA3BRmVAD6kiq9TJVeJtxVv+OsjYjSJgUaUhVTlK0VG0JiMlauLWBtPiHRl1gmzMr698enieifKzX82jA25fL80ms7\/ERDqiJlrPz64b5E9ERRJBFtvW1ofwwNAAAAYCAhUQHoX3\/47iLf3jpnqCFVwfbcv\/HvkyExGSShJWm6CbOyQmIy2OHFz758mIimJ4Sxbff8lMuyR6LzvvmN8Mlb5gzlN8MQ0UuHqLzRl4gigryXXB8wAEMDAAAA6D9IVAD6nSq97Ond1fzLlLHyb+eHsBwj5JqMnAMVDqu83n7\/lPBlk72FLRi7WhXwxkoNEeUuCjWkKhKUUiIqrrGzaZytJ+uJaPQHF4no2YmBf78hmAAAAADcFhIVgIGw6YSVpRPsXONrhvlQ2xHGEUHeDhc\/\/48jOfsr5t6\/e+79u4vO1iiu+5zfgn\/PXVerw\/35W4pr7WNXTGMTL2dyZ7Ig+4i7r5F3+HAAAAAAt4BEBWBALdh+IWFThXCzO5seES7iIqK5D+zOOVCRc6Biym07WWRJWh6bVzm4M8l\/WaL\/skQiMsWGC+966sFg9hEsV2EPF1Z3AQAAAHAXSFQABho7E4xNsAjj\/PaVzmj8moWrwvyXJUrCOSKaMCuLzbfMnCovPXhbZWHynw7a+A39KWPlyzTYsgIAAABuBokKgCup0sv42pFEdLNaFsX5sAkW\/h\/21trpwW\/dzN1fVWZ9e9+cmdtZMHFSqL7Eoi+xLEnLE250eetlLdu7wl4u1wYmtB04BgAAAOAWkKgAuFiusYFfDBbi57V7QYjDBYZUxZH7hqeMlbOXLfVNhtr\/b+\/e45q67\/+BvzHcIaTINUJCxQsVEUYCtkiLddWab7WYwrC6tiuWxq+ruE3b9YL78uj8Kv3NbrpN+NbK1+\/oZdPpoBS1o6N7OGgRFQKiFq1aJgGM3KQQLiYS+f3x0dNTQIpyyUl4PR\/945wPJyfvN8dC3nxuZq\/QPHa6IrmEHTz6o7Kv6\/pYufLwfB\/WKMtu+vP5Xhq0RBgAAACAwGHDRwBBiNnfGiN1PLD8O1ugcHvbezpNoe\/uI0lEXK3C2bi1raKiIuE\/\/DMzlNy6xj\/SlC40mNmserlYpMNekAAAAGAN0KMCIBRlehObuML9F7O\/dUdlN\/vqgCplGPvy6z755xXu9G\/ZsTsv9RGRnYfTiV\/PwTpgAAAAYBXQowIgaAcv9B680Hu3r3puw3Eikge46hp72moS3nn\/h0TUd67Zfo7vsbjgoKgCncZvwFR+AAAAAEFBjwqAzWLzVfZ8+DU7tZ\/jS0RurvY6jR8RYcoKAAAACBkKFQAb90ZGNduAhYhu6g1ENMXblZ2iVgEAAADBwtAvANuna+zhZt631SQ4PxfZV9NM5pumz76uxxgwAAAAECT0qABMLqUnW4nIPtTXfp6\/nYcTET0d4mLpoAAAAAAGQqECMLnEJ5cUlVxlxy4pUS4pUQ\/6O1g2JAAAAIDBUKgATDqr1h3jRoLZeTg9s35eztL7LBsSAAAAwACYowIwSbFapa0mwT7M7zH5pWOrvO2IAsWiZz5pL2k0WTo6AAAAmOxQqABMajFP6AgAACAASURBVLrGHnmAKxGFpMexlrwUo7n+G\/u5fkTU32lUJ5d8cd5ARDsWerT03owPdmZbRmIKPgAAAIwrFCoAk9qK5JKqIpXrxliuxc7DiVUp7PjjvCVE1Lu3or\/TyH9h2SrvmP2tExkqAAAATCqYowIwqekae\/75RRPbGlLX2LMvv67hSs++\/Lr3fvpZ796K3r0V7DLHRcFE1GAwNxjM\/3umh4gCxaJAsahe41ev8WN9LAAAAABjSNA9KlKplB1cu3bNaDQSkZOTExFZ3bGDw61VlQQSz7jmwk75x\/zLhNZOtwkkntG08x\/NXd3nuQ0VQ7a\/cdxoNBoP6m\/88FcxouCpP\/znjYu119g1vz5uqNf4la3yZq9iB2V6k8xdxLpZxiovZ2dnoX2f76Gdy0Ug8Yy+3dHRkUtHCPGMpt3R0ZF7RkKIB8+FnXI\/0ABgMhN0j0pWVlZeXl5eXl5aWhpriYqKioqKsrpjhUJh8RgmLBd2yj\/mX4b28WvnP5oxvH\/SX\/T78uuIaFvag\/z2BoOZvitG6hgoFrGiZazyUigUQvs+33M794AEEs9o2kNCQsbp39vEt4eEhAgqHjwXdqxQKPz8\/AgAJje76dOnWzqGIYSHh2\/fvn3r1q16vZ6Irl27dvnyZSKSSCRE1NHRYV3HEolEJpNVVFSwPw9bPJ5xzYWd8o\/5lwmtnYjCwsIGpyO0OEfSzn80Y37\/tpoEIio92Vp49Mqf81sGX79joUegWBQjdSSiBoNZ9fcbo3xfiUQSFhZ28eJFo9EoqO\/zPbQTEculublZCPGMsl0ikTz44IOnTp1i6Vg8ntG0s1yKi4vZX\/EtHg+eC9cul8tDQ0MrKyu5\/hYAmIQEXagkJCSwQsXasY9cFRUVNvAD15ZyIdtKZ1xz+f0WxXM\/up87jVxSyKa1DFavufVH0D+f6339i857fkc8GsGypXSQi2BJJBKlUnn27FnbSAcA7o2gh34BgED8Ir3y4KF6rjipKlLJA1zbahKqilSuLqLYaG\/uSll2U2XzDSJ6Zo5LoFj0YpirZSIGAAAAKyfoyfQAIBzrXisnInmA68c5cfIA16oiFTut165gBUzkkkJ25YqPr9kR6W7Ptj93ra\/0CnaQBAAAgLuDHhUAuAu6xp7S8hbuWNfYc\/NmvzzAVR7gmpmh5C7rJ\/r89vb2+5d51mv8Diz3tEC4AAAAYLVQqADA3UlN0xKRrrEnNa0ickmhT9hHbFmw1eqgP279tlb58Sft\/FctmObITV8BAAAA+F4oVADgrnmF5kUuKSwtv7UzfWqadmN6JRE9kxA0YL6KLLupwWB++K+t\/f1ERGyDyN\/GeVgiagAAALAmKFQAYAy8\/7fLv8k6R0QF78Xxx4AR0ez0uMrjK1xSvt0t4ekQF\/SuAAAAwPBQqADA2NiedY7Nql+tDqoqUs28372qSMU2YCEiOw+na6sid2i7DtVeZy31Gr8YqePbcRKLRQwAAAAChlW\/AGDMRC4pZAuCyQNcT3zyONfuFZrHGnOb+nWVHVeDfX++cZ65oeMAnSWiVSHO\/JvE7G8dvO09AAAATDboUQGAsaRr7IlcUlh4VE9EpSdbvULzvELziGhFcgkRsT6Wn2+cR0SiQMnVKQ4n9ANXLi5b5c3WNR5zbOMXeQC2dgEAALAC6FEBgDGma+x5Zn3Z4MYFTxYdO7SEnd682T9lil3wz+eXf6xzXSFnFxzdeuypmS72UyhQLDq7UtRy43JMxdiEtFodtFodRESsw6f0ZGvsfG8iin++pP5KD7eRJQAAAAgHelQAYIJ89bXBKzSv9GSrrrHHJ+yj0pOtRPT0Cjn7qjzA9RulbPreJll20+oj7UTk49Dn49hHRNPlbvf8pm01CW01CZkZSq4yISJ2TEQF78VVFakGzP4HAAAAIUCPCgBMqPjkEv5BW00CGy3WVpPw8xdDosK9uCqiv9NYRhVOSWGiQAkRsSFkQ+LWEGswmDcVd5bdHk7GTeXXNfaUnmxJ3awloi9OtsgD3FYklzz3o+mb\/jOEeP0tusaeFckl6GABAAAQAhQqAGBJXPmxL79utTqIq1KIyM7DyXVjLHfaVpPwxLPFJyrbuFMi6t1b0d9pdFw6yz7U19zQMcvD+XC6053eglmR\/Dk72PaHL7f94Us2GIy1yANcP86JY5NYIpcUWrZi+fFTQbu2KWnYCg0AAMCGoVABAEFgG97HRvtELikkIolEUlv2GBH1dxp791bYh\/o6Lp31yYcL9+XXpaZpua4S\/vYsrOOFj\/XVDP++usYerhJoq0ngptpXFam49thob253y+HJA1xHX95kZihZDw8XFaFcAQCAyQeFCgAIBatVOPGaplmylpz9Fw4s94yhZnNDh0tKFDdMi4j6aprtQ33Z8RsZ1T99fhYR\/W73eVPdNzsWehCRd6fxrgLwCs3LzFDGRvvUN\/bEzvduq0n4494LP0uZzb7KDVGj22UDq2o+zomrb+yJTy7hlhTTNfbUN\/a8d\/DfuUfqC3Li6NasmGVNrdc1L58seC+ORTvNz\/lK03W2HpqusYe9XNfYwxVL+z6qkwe4sV6mtpoE1CoAADCpoFABAOHa91EdEa083B4jdTyw3LNnZ6njo9NFM7x691YQUb3BXBney3XC7Pnwa+6Fv4u8NQBs2XTnI\/++PvJ35IqlisLHp8vduSqFiOQBrlxPDncw+EvsVB7gGjvfe8\/b0fzL\/LydC96LI6K30iK4K7mBZ1wLEb2+rTo89L4Nm7Ws5dX1c1arg9hblJ5s5eb5AAAA2DCs+gUAVqBMbzquNxGR6V\/\/7t1bsUPbVddpXrC\/NTVNO+TgLll20+XOPiLavVgSKBbdwztGqf6xL79O19gT\/3wJ2w1m8cqjpSdbX\/l1FfeOusYe9h9byiw1Tcuu3LLjbPzzJcVlzeyaRUllL77eOi3ySP7fG4iIyE7X2LP+jQputgzzm6xzXqF5r2495RWal\/3nr1mVwu6Qmqbdl19HRN903oid7822o0lcJuNeW5ATx9Y3498wM0M54353Vvm01STERt\/d7jRrn53BDuQBrlVFS9n9tZ8u5RZqAwAAGFd206dPt3QMQwgPD9++fXtCQoJer7d0LGNAIpGEhYVVVFQYjXc3EEWAbCkXsq10bCkXGqN0zvzE5z6nKURUbzAv2D+iSSbjYQwfzXd6YPrJa25e\/OMBLz4zY+RFyJDzdgZPgynIieMvbDDYlau90\/xd\/pJ3ecOvKkcev9DY0v81tpQLEUkkEqVSefbsWdtIBwDuDYZ+AYDNmvd+C1u5WCYWLZI5Hq03WTqi0eKm\/m9cG\/KrX8zlulD6+vr9wj8aUF2sWndswwuzY+d7s+KEzYHhRqn9Oa9uxdIAd7dvfwsM6JDhz5ZZ9mzx8dvrrc2a4Xv80MPT\/F2IaGW83KoLFQAAEDIUKgBgy2TZTWx+y\/sqz5j9rQ0Gs6UjGhs793z1oMLL1dleFuBSWt7KptYMnrtSVHKVO2YdKa+se+CNn4US0TMJt9YkYFP\/UzdX8GfLDLNgWnOrMV7TlPmmuPLMNbUqsKpI9b1LqwEAANwDFCoAYOPK9CZZdlO9xq9stffKQ+3cdpDWbtW6Y\/fwqt\/uPn\/gkE7X2FOQExefXMJfT\/muVhV7aPlRo9GomDeVddGUnmxN3VyBvTIBAGAMYTI9AEwKZXoT9dOB5Z5cyytR7mWrvOs1fn94VOLqYGfB2CYYKyfiby+LPJpbcX0pbIr\/6GMDAADgoEcFACaFlYfby1Z5B4pF6Q+JDaabm5Tu3JcSZjknzHJmx7LsJgsFaK3Y5jNd3X2aZ2a01SRII\/L9fZ3RtQIAAKOHQgUAJosyvSlJ7KKZd2uCeGXTDePN\/pWH29mE+1vXrPIOFIuEXK4EikVlq76zHpfFo2UzZDzc7Z9eEaSvVrPGffl1A3bwBAAAuCsY+gUAk8Wm4s4\/n+81mfuJqMFgXn+0Y+XhdmIT7ve3biruJCK26Uq9xq9e4\/fJU1PLVnlvVLgFikX8YsayZO4Dt4XRafw2RLpZJBi+l97QeoXm\/SbrHOtOWa0OwmAwAAAYDRQqADCJvP5554z\/a2aVCX8FsAaD+eCF3gFrgs3zdggUizYp3VkPhhBqFbaCGXcqy24q05vsiF6NchdCeES0Petc5JJCNi+fzbNn\/7GVjtl+L6ylqki1a5uSiJyd8JsIAACGgKFfAAC3xNzeFHLHQo9AsShG6jjgglu7svCGWs32tL\/Q3jcx4R1Y7slCajCYuVBXHm7nBoPVa\/wsPgyMw3Zu4U4H967IA1x\/\/FTQj58KIowTAwCAoaBQAQAYiA0D4wsUi3Ys9GB1wpB9F5c7zf9dZviHzsh\/icxd9HSIc+Is5w0Xbwy4vl7jd\/BC7+A34mMTZg5e6E2a7dJgMLNhafwqhWkwmGXZTayMeecxyU\/\/2XE3uY4Xbm9KIsrMUK5WBxWVXF0S509EpSdb2ZpjmRnK2GgfeYDranVQbLQP9mMBAAA+FCoAAN+vwWBmE1pY8TD4gvs9RHuX3seKipWH2+u7zAeXeXJX7ppVR7PuY+PNuDonabbL8IUKe3nSbBd2PLhE4dtU3Fm2ynt5sPPyYOcBkQ\/zqomRmqYdssOEayzIiYud791Wk0BEkUsKsWgYAAAQChUAgLvC\/9CfNNvl4IVe4q3ExYoK\/jSSDUc7fvyAC+uKGbBaF90erMWKkMFf4o7vdA0f61cZ3NvDrQTA+mQGTM4ZPXbzyA9bWntv3vNN4pNLst6KWrVCTkRVRaq72noSAABsFaYwAgDcI1al0O0iQZbdpCn65qNL1xsM5gaD+Y9V3bLspvxL1zWf33znyrf1A+vi4CaT1Gv82L6T\/I4aVupwt2XHIwlJlt2UcdJARGV6U0LBNf6UFXZ\/9l47FnqMMnd+nERU9awPWyrt3cWSeo3f4Ok932v9GxVeoXmlJ1uJiHWtAADAJIceFQCAMVN42Vh42Ti4vfgb8e8+++qjJ9ye+Oga17jycDv7oN9PZEf0oeq+Rw+2sS+xD\/pJR9rvIYZ3qnveqf526BS\/VuHGrSXNdjnT2venL7+9rCjRO\/1Yp+lmv7bpBr\/3pl7jN\/tPzcmhLmkPiokoZn+rgWjXrMs+ofdxr43Z38p1Fj0x3ZluFzArD7eX6U13FXx8cgkbBlZVpMKUFQCASQ6FCgDABOFXKURUpjfx+1Vm3GfPRoKxD\/36bvPYjtEi3ri1eo3flgXiLQvE9Qaz7HZPDn\/E2s7K7o2KW3uzXFjj+23MtwqSbxc6e6Wkk\/X80O0hcCevmub7Ow644cinysQnl1QVqeQBrvIAV0xWAQCYzDD0CwDA8vgVC+v0SDh0L90pI7SpuJP1dciGWhiAiLgqhfM7bdexK992j7x5ore86UbM\/ta\/ftXLNbKKJfFQO9uphv9yNlWGjXPzcLQbPrwVySVE9HFO3N3kBAAAtgY9KgAAgsBNhZ+AdboOXug9eKF3o8KtzmA+efXG4K6bslXeXAzcSLDfUzcRSSSSsLCwiq8q9p4ebskyrpuFeIsNsOMvn\/flX5l\/6fqGox1EFOAuelnptqm4U9fYU3qyla0Dtj5Nuz+\/bgxyBgAAa4NCBQBAKCZ4u8adld13+hK\/Uhr9CDRWtLCCh1+0MOqZzlF+DmV6E1szLWm2i8nc71j6Fc33JqKsDGVWhpKIsBQYAMBkg0IFAAAmAit4+D0tDBvtliR24VocRXZE1LOzVJbdxK0AVlWk2pdf93C0D9ssEgAAbB4KFQAAsCRWt1x+0Tfv4nW2A2aM1DFptnPSbJdAscgrNE8e4Mqm17+2fg7xFi\/G1pAAALYNhQoAAFje\/f\/bzB2X6U1sJFjZKu8yvWnl4Xav0LzV6iAiekjp9Wzi\/eyyqiLVwUP1614rZ6f83VcwTgwAwAZYvlDRaDQRERGpqamWDgQAAASkTG+KkTrGSB3ZGgNE14mIdI09OxsPXujdVNzZVpOQ9KSMFSryAFf+a9tqEnSNPfWNPbHzvXWNPduzzu0bwYx8toULO\/YKzdu4NmTnnq\/GOCsAABgxCxcqSqVSpVLp9XrLhgEAAEKz8nA7EZ3+iY+n08CV9JNmuyTNdolcUlhVpBrckcJa2E4s7CAzQ5mZoYx\/vqS0fLjl1LgqhbvJr34xl4h0jT2l5S2padqxSg0AAEZijPdRkcvlOTk5Go2Ga8nMzCwsLCwsLOQ3ctasWXPhwgWjcYiNnAEAAMLfb2FLkDUYzBfa+2L2t3Jz8UufEM9W5HNXcoWEV2ge\/z+uL6XgvbiEJwITl8kGv4s8wLXko8eIKHJJoVdoXunJVl1jj\/lmP\/fV1eqgAuzrAgAwscayR0Uul2\/ZssXf359r0Wg0Uql08+bNCoVCpVJVVlZqtVr+V4noxIkTjzzyyBiGAQAAtmTwQmHstF7jd+o5n56dpVMCJUR0p8FdqWna1DQtm5Gf\/dv5RLTn7ejSk61PvfC52N2eiI58sCAyzJNdzGbncwuLyQNcZdNcS8tbq4pUsfO9D+yJXbm2dLzyBACA7xqzQkWtVqekpLS1tXV3f7swf0REhF6v12q1LS0tsbGxCoVCJpOlpKQ4ODjk5uZGRETMnDlz5syZRKTRaLKzs8cqGAAAsHncFpk3GzqIqF7j12AwP3qwzWjuH3yxrrEn4sGPK3Mf7e802of6xs73bj77FP+C375d\/ZJ917FV3iuPtHNbx+gae1jpErmksK0m4bGH\/diQMF1jz4rkEqw5BgAwrsasUOno6NixY0dnZ2daWhprkcvl7u7utbW13DVSqTQ7Ozs\/P5\/\/QrVa\/cgjj6BKAQCAu8X2kdyx0CNG6khEgWLRpRd8b9yk4L1DbJ15cJmn8eBZIjJ9etElJYqI7DyciMhUdMms++YleyMRycSislXerb03Iz9sYa+KkTqW6U1E5BWaFxvt\/dr60Nj53qx\/BmuLAQCMqzErVI4ePUpESqVyQDubKK\/T6bq6uu72nlKpdEALu4nJZCIiR0dHazl2cXFxdHR0dnYWSDzjmgs75R\/zLxNau4ODw5DpCC3OkbTzH40Q4hllO3s0YrGYu0yYcY6kncuFbhNmnCNsd3BwcHV15dKxeDwtJkop7gsU93\/6hNO5Dgq9jxymUL3Gb9FHhiajiLv+0k\/uI6KWG\/Y+Dn1E1Lu3gr6LfSmluG\/vQntvlym3lxq7RVPSd\/RyV8VpwzMbqkwm05WqZUTEvgmD47z0k\/uKG4wPBzgd0fW\/XtY7OZ\/LKNtdXL7dABQAJi3LL0+cn58\/oI+Fk5WVNaDl1KlT1dXVZ86cIaJ58+YRkVUcOzs7X79+nYhCQkKEEM+45sJO+cf8y4TWXltbGxwcPDgdocU5knb+oxFCPKNsd3NzCw4Onjt3bl9fnxDiGU07+2c2d+7cqqoqIcQzynY3N7fHHnssJCSEpWPxeLj21azda95m80dEdPSpWx\/Zf1c\/QzX1G6Lelhv27zT61fS4zJs3z7\/\/mxsNXy72MUpd+n96PpB9OJ43b17wD2nVmTPvzv63xP7W6C8mO85+gzSi5YYDe994TVNBtt\/lE0u4Czb\/0TfR8PcHXK+z04WBTkQUH2QXH+Ra\/I2fqX\/K171O66axvWJc\/3FNUu7zw0nyXO6tPTo62mg0nj17lgBgErObPn36GN5OqVSmpaUVFhZmZ2ezufW1tbVbtmzhH4\/kPuHh4du3b9+6deuAlYu7urq6urrYNBg3NzcisopjiUQik8lOnTplb28vhHjGNRd2yj\/mXya0dnt7+wceeGBwOkKLcyTt\/EcjhHhG2S6RSB544IGLFy8ajUYhxDOadvbP7OLFi9euXRNCPKNsl0gkP\/jBD86cOcPSsXg8Q7afXelMg4QduD7gepbL8ePH2eKTd7p\/iL9HbpyJu0\/LDfup9n03QnynLpvFv3\/v3or+TiMRPXhE9LR\/xyFd\/weLXQPFosGRsGsm4XMZefu0adNmzJhx8uRJrAsKMJmNY6FCRJmZmc3NzVyhUlpaOsK5KKxQSUhIsI0tViQSSVhYWEVFhQ38wLWlXMi20rGlXMi20rGlXMiq0vnDIsl8P4dAsWjx39q+au8bfMHIc5GLRaWrvBsM5sGFR5neFBvt45wURkSpadrP\/9nAzcUnIjaFJtBd1Gnqn+tlv\/Jwe5nexMaVfd3R9+iBttEmefe5WAWJRKJUKs+ePWsb6QDAvRnfoV\/V1dUqlUqpVCoUCrFYXFlZOa5vBwAAwPn50Y6xupWOt0TygeWeDQazp\/OUxXInIoqROt5s6NA19rCdJYmURMRO2UHkksLMDOX2zHO6K7dWCZP\/b5PuRb8ZEntWscTsb+XXNgAAwIxvoZKdnR0REbFt2zYiys3N5W+iAgAAYI1WHm7nn9Zr\/GTZTZRdKA9wzdwWxba3Z1UKO2ArGq9WB3GLGvf3U8z+1tUhLgkznQPForJV3kQU9l5zh2mIhZUBACatMS5UtFptYmIivyU1NXVs3wIAAEA4uJ4WXWMPt1Mk3y9fmrPz3fNNZ55iixqzPpYpHk5vV3S9XdFFRKxf5ezzvg0Gc8z+1okMHgBAyKZYOgAAAABb9vb\/nOsz93uF5rF9V1gfS1WR6heakLz\/e\/h+mVvrykjXjbFEFCgWHVvlfaf77P3d\/IkLGgBAAARdqEhvc3JyYi1OTk7WeOzg4GDxGCYsF3bKP+Zfhvbxa+c\/GiHEMybtzs7OgopnNO3Ozs53db2Q29mOPcKJZzTtbO+OCXvfh5b\/yzfsI3b6XxvnLnzIV\/vpUjZOzHVjrOvG2JD0uNbjy\/7z4alEVFWkSvnxrLaaBPaf+j8C2UFVkeqPW5VVRaq2moSCnDjWQrb1XLgfaAAwmQm6UMnKysrLy8vLy+N2u4+KioqKirK6Y4VCYfEYJiwXdso\/5l+G9vFr5z8aIcQzJu0KhUJQ8YymnXtAAolnNO0hISE28++N7aE0Ye\/rK51jvtnvFZoXr2nSNfbEP1+yL7\/u7\/\/qffH1b0d82Xk4Zex5tK0mQR7guv1X81hjc5s5MeULdiwPcH0mIYiVN9yUmNqyx\/6W5Xn88KOW\/X6OVbtCofDz+86emwAwCY3x8sRjZcA+KteuXbt8+TIRSSQSIuro6LCuY7bBRUVFBftbl8XjGddc2Cn\/mH+Z0NqJiC3oOSAdocU5knb+oxFCPKNsZ2utsn1UhBDPaNqJiOXS3NwshHhG2S6RSB588MFTp06xdCwez2jaWS7FxcVsDVyLx8OO50lv5ufE3WzuulGl7++8\/tCexleU7ve5OSYfaWHXZ2YoY6N9UtMqSstbZT73HVM7XZ0qDn4+nG7pJ7LL\/ov+9a1lAvk+30O7XC4PDQ2trKzE8sQAk5mgCxXsoyJAtpQL2VY6tpQL2VY6tpQL2VY6Qs5lo8Jtk9Kd3\/LBud60LzrLVnkHikUNXeZAd9Hy\/GuH1VP517ikRNl5fDuYal9+XWqaVa63KcE+KgAg8KFfAAAAk9POym5ZdhO3pBgRPTfHpV7jx3acDHQXERGrUv7rmCFmf2u9wUxEvXsrfpb498glhQue\/IyIVquD2LSW8sLH7\/RG3ErKw7SMnLPIjkV4YLkntznmrZgH7ZUJADC88d1HBQAAAEaDq1V2PuoR4C6SuYuW5LbN83Y4cfVG6dNel77py\/myh4j+4+83FkUG75pV9\/8e9mDXX\/z9iVm\/eJAdB8vd2XYuxNuMcrABX6o7d8278JwdERGV6U0yd1GgWNRgMP\/1Qu\/vK7vZMRH9NML1yL+Nuk4zW2eZUzbUCmZ1nWaRHWEVZgAYCRQqE8HT0\/Pxxx+vra21gZFstpQL2VY6tpQL2VY6tpQL2VY61pXLxn91csdlehPRdz7ue3p6Ri5aNn\/37ryFN1jfRUB\/X8\/OUvZVpx+FiWSS\/k6jnYcTvxTp77w1sIoNGGNf6u809ptvTvF0CZozlebEspYFB884xMjN51sC6755Wen+8neHpaXNF7ODBoO5vssscxet+2fHYfXUBoOZ1TOsMVAsCvIQ0e2tYxoM5jK9aVNxJ\/9WgWJR0iznmGlTZvlcNPrTx5ft\/+fLvrH5DgKAtUGhMhGmTp36+OOP796929KBjAFbyoVsKx1byoVsKx1byoVsKx2bzIWrXg4s9ySilYfb3RzsztNZul3YsI6OY1dMdnZ08ML1gxd62fXPznH5V4OpbJV33qVeqZtoU3Fn9YkVrI\/FzsPJJSWKiOxDfXWNPf41V\/rONrHyg4jsiA5cuB7p65D2xXdKDv64Nb4dCz2SZrsQq0nELuyYbXbJqpTbk3NMZG\/30lz7aJ8pa\/5lGvtvGQAInqALFalUyg6uXbvGptOxFdat8ZgRTjzjlws75R\/zLxNa+53SEVqcI2y3uu\/\/SNq5U4HEM5rnMuBYaHGOvJ2fjhDiGU07nxDiGcPnsvJwOzvum+I48\/1vuOtj9reyIVsD\/k1+eK6XiGTZTbfvb\/YKzWP3Z+uM\/WFvbYLKP3a+NwXMbJgtfSVdW1rezt3n4IXOEcb5xnHjG8eN7NTPw6XiaQ8iChSLWDeLnYeTfajvFJlkioczEfV92RR9vH7F\/aKPL5sJACYZQU+mt5l9VMLCwiwew4TlQsJbj3+StPMfjRDiGZP2sLAwQcUzmnbuAQkkntG089MRQjyjaecTQjwT8FxYlXJX909N00YuKbxY7\/ObbHPkkkIiCg5yK3gv7h\/7H5UHuI4m\/pnzFGzNgIMXemu6XViV4hAjFwVK7Dyc7DycHGLkTklh0b6C\/rgCAONE0MsT28w+KpGRkW+99VZCQkJPT48Q4hnXXEh46\/EP0z5jxoysrKzB6QgtzpG08x+NEOIZZbtCocjKylqzZo1erxdCPKNpZ\/\/M1qxZc\/78eSHEM8p27tGwdCwez2jaWS7cUvgWj8eKnkvYHOkHf4wYMClf19jz2Redf80\/X1F9bd87C9a9\/iX\/Pttem8nWSh7m\/kWvBMxIfIAG+fdH0aaedgAADONJREFUFx7bXj+4HQBsm6ALFZvZR2XA70KrZku5kG2lY0u5kG2lY0u5kG2lg1xGSR7g+suX5jw836e+sWfG\/e7+vs7f+xI26SVl08m9O+az0xXJJUT0cU5cfWNP7HzvoV9V3vToz86ObfAAIHzWMUfFNthSOraUC9lWOraUC9lWOraUC9lWOsjlnt24SRmZV4iusNM\/\/Ldi9\/uXpkyxe+uN8LffOf\/G+mmsy+XGTQkRpW6uePetWayFVSlEJA9wrSpSccd3eqMpgZJxTQQAhEmgPSp+fn4vv\/xyeHi4pQMBAACACTJdvMdhSsfg9gb99biE0omPBwAsS6CFChH5+fn5+fl9\/3UAAABgEx6OmvKKxmtw+y+31uQesfrheQBwt4Q79Kupqampaegl2AEAAMD2nD5NDysVDyk8+Y3HK9tRpQBMTiJPT8\/vvwoAAABg\/OV+wtUkdp1dfX\/6q+7VrecsGRAAWI5wh34BAAAAAMCkhR2UAAAAAABAcFCoAAAAAACA4Ah0Mn1mZubMmTOJKDc3Nzs729LhfA+5XL5ly5bS0lIu1PT09AULFhDRsWPHtmzZwhqVSmVaWpqbm1t3d3dGRoZWqx3mYotQq9UpKSkODg5EdOnSpdTU1GEiFHg6XHgDIrHGXPg0Go1KpeKCtMZ0+I+GH4w15jIgmKtXr6anp+t0ujtFKOR0BjwXIuKCtLpcGO73iLX\/NKPbv2X8\/f3Jyn+gZWZmNjc3f2+oQ34G4H5D8f9Hu9MdAMA2CLFHRaPRSKXSzZs35+bmqlQqpVJp6YiGw\/\/9wajV6oiIiN27d+\/evTsiIkKtVrP2NWvW6PV6lUql1+vXrFkz\/MUTT6lUPvfccwUFBSqVavPmzVKpND093UrTkcvlGzZsqK6uVqlUu3fvjo6O1mg0VpoLn1KpVKlU3KmVpiOTyUwm0+bNm1UqlUqlYh9ZrDQXItJoNNHR0bt371apVF1dXa+++uowEQo5Ha1Wm5iYyB7K2rVrr169Wl1drdVqrTEXIkpPT3d3d1+7dq21\/zRj2L+rtWvXrl27Njg42Ep\/oHHlB2fIUIf8DCCXy9VqdXl5+dq1a4koOTl5mDsAgM0QYqESERGh1+u1Wu2nn35qMBgUCoWlI7ojtVqdlZVFRN3d3VxjeHi4wWCorKzMz8\/X6\/Vs20qlUimVSqurq4nos88+8\/LyYj98h7zYItjHFPa3K61Wq9frfX19rTQdnU6XnJzMPgFXVla2tbWx3ZqtMRe+ZcuWmUwm7tRK0\/Hx8TEajS0tLfxGK82FiCIiIsrLy\/Pz84koNTWV\/eXeetNh2KfAnJwcstpcfH19u7q6dDqdtf804yIsLS3V6XQ6na60tDQiIsK60lEqlbm5uV5eXu3t7QPyGhzqkJ8BFAqFWCw+ffo0+w4EBwfL5fI73QEAbIbgChW5XO7u7t7c3My1sI+YwtTR0bFjx45du3bxG7lfkNwpEclkMiLiPpw5OjqyliEvFhRrT4f79UZWnotarQ4MDCwrK+NarDSdIf+PttJc2OckvX7gDg9Wmg6jVCojIiLYx2Ky2lyam5vd3d0HfJa10lwGY6lZVzoffPDBa6+9ZjQauZYhQ73TZwAfHx8iqq+vZ41isdjHx+dOyQKAzRBcocKwX\/w6na6rq8vSsQzn6NGjR48eHdzO\/ZDl\/7Q1mUzsh2x9fT3\/7+JDXmxZarU6KCiI\/Wonq01HLpfn5OSsW7dOr9ezP3iT1eZCRIsXLy4vL+\/t7eU3WmM6vr6+\/v7+e\/bsKSwszMnJkcvlA6KyolyIyGQyeXp6Hjp0yDbSIaJly5YZDIZPP\/2Ua7HGXNi8wT179rz55psffPABN8\/BGnNpaWkxGAyxsbFyuVwul8fGxrKP6XeKUIDpaLVa7ocw351CHfIzgMFgYDVJS0sLd\/Gd7gAAtkGghQpYEJusUldXJ\/xlDIbHBoCtXbvW3d09MzPT0uGMChuSbu1PhG53mV66dIlNhKDbg++tl6OjY2ho6Pr1620jHblcHhwcXFtby\/3p3UplZmbGxsauXbt2\/fr1arWazVGxUjqdbteuXWKxeM+ePVlZWYN78AAAbJVACxXW1cs+01g6lnvB9arzu9e5XmmZTObo6Dj8xZbCVlDR6\/XcIjlkzekQERvQLJVK2dhla8xFLpdHR0d\/9tlng79kdemw6pH967KBR8PwJw9Yezo+Pj5OTk5sqCTH6nIZclKHVT8XbqmDJ598sre3l+tbsNJ0OHcKdcjPAFw\/ko+PD3fxne4AALZBcIXK4OFeVvfXowG96ux0QK8011s95MWWwqqU6upqfpVivelwpFIp+71upbkoFAqpVLpu3brCwsLExEQ3N7c333xTrVZbaToDWPWjYWNy+C1WnQ4RKRQKR0dHbibA4HisKJfBbCMXbraJtaczZKh3+gzAH+5Ft\/9Hu1OyAGAzBFeoEFF1dTX769fSpUvFYnFlZaWlI7o7p0+flkqlarVarVZLpVL2t0mtVtvW1rZ48WIiWrx4cVtbG1vufciLLYIt6avX6wesr2+N6bDZKWywB5sZzIayWGMuRJSfn\/\/kk0+ydWNzc3O7u7vffPPN\/Px8a0yHLf7DRrKx1Zat+tHodLra2lr+5AGrToeI2NoA\/M0orDEXttIX\/7mwpKwxFyYzM5P9QNNoNEFBQax\/1XrTYe4U6pCfASorK41G47Jly\/j\/o93pDgBgM0Senp6WjmGgysrKuLi4pKSk0NDQQ4cOHT582NIRfY9p06Y98sgjly5dYj9Pz58\/\/8ADDzz11FNRUVEVFRXvvvsuu6ypqemJJ5544YUXnJycdu3axf5KdKeLJ96iRYtiY2N9fHyevW3x4sWVlZUnTpywunQ6Ojrq6+uTkpJeeOGFxx57TKfTvfbaa8OEJ+RcBlAqlTNnzvz888\/1er01pqPX67\/++us1a9bYzKMpLi4ODw9\/6aWXnnzyyatXr1p7OklJSUT0ySefcC1WmsvZs2cXLVq0evVq9lxYL7GV5sIiZD\/QQkND8\/Pz\/\/KXv1hjOhKJZNGiRe3t7cXFxcOEOuRngI6ODiJavny5Wq3u6urauXMnaxnyDgBgM+ymT59u6RgAAAAAAAC+Q4hDvwAAAAAAYJJDoQIAAAAAAIKDQgUAAAAAAAQHhQoAAAAAAAgOChUAAAAAABAcFCoAMGbUanVubq5areZO2Xbgo6dUKtlt+TuxAAAAgA1DoQIA40Kj0Tz33HNjciulUpmWlubj40NEWq02MTExOzt7TO4MAAAAgoVCBQAAAAAABMfe0gEAgA3SaDSJiYlEtG3bttzc3OzsbLlcvmXLFn9\/fyLq7u7OyMjQarVqtfrpp5++cuXK3Llzr169mp6evnTpUvZC5tixY0eOHElLS3Nzc0tMTIyIiPjTn\/6UlpZWWFjIOlW4N2IXb9myhYgyMzNZy8yZM4mI3Vmn003s9wAAAABGBT0qADD2srOzc3Nzu7u7N2\/enJ2drVQqd+7cWVtbq1KpVCpVdXV1Wloam77i7u7u5OSkUqmSk5MVCoVKpdq9eze77NixY9HR0TKZLCMjo7u7Ozc3NzU1lf8u6enp8fHx7Prdu3dHR0enp6ezL82cObO6ulqlUm3evFksFicnJ0\/8NwEAAABGA4UKAIw7hUJhMBhycnLYaU5OjsFgWLZsGTutrq5mB\/n5+YmJifn5+ez09OnTJpPpTveUy+XBwcHl5eXs+vz8\/PLy8uDgYLlcTkRXr1799NNPiUir1er1el9f3\/HKDQAAAMYHhn4BwLiTSqX+\/v579uzhN9bW1hKRyWRqaWnht7Op825ubkR048aNO93Tx8dHLBbr9Xqu5fTp03PmzGFz7ru6ujDWCwAAwKqhUAGAcefr6zvkRBFuIWPuNCUlxcHBgc02UavVd7VumI+Pj6Oj49hEDAAAAJaGQgUAxl1zc7NUKvXx8Rm+lyM8PLytrY2rZ4YvPFpaWgwGg1Qq5VqkUqnBYBjQPwMAAABWCnNUAGBcsIJBJpMR0ZEjR4hozZo17EtqtfrQoUNDbtooFovZ2C21Wh0fH8\/dakBNQkQ6na62tjY6Opp1y6jV6ujo6NraWoz4AgAAsA0oVABgXFRWVhoMhnXr1qWnp2u12oyMDKlUWlhYWFhYuG7duoKCgsGbNm7ZskWv12\/btq2wsDAlJaWgoMBkMoWHh7OaZMGCBTk5OayM4a4vKChYt24du2d5eTlbnhgAAABsgN306dMtHQMAAAAAAMB3oEcFAAAAAAAEB4UKAAAAAAAIDgoVAAAAAAAQHBQqAAAAAAAgOChUAAAAAABAcFCoAAAAAACA4KBQAQAAAAAAwUGhAgAAAAAAgoNCBQAAAAAABAeFCgAAAAAACA4KFQAAAAAAEBwUKgAAAAAAIDgoVAAAAAAAQHD+Pz0egcX+IInaAAAAAElFTkSuQmCC","height":520,"width":1080}} +%--- +%[output:61d71273] +% data: {"dataType":"image","outputData":{"dataUri":"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjAAAAFRCAYAAABqsZcNAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQucVWW5\/5\/Zt7kPw8wwM1wUUC5y05IUy5NBaqWV\/6gOKpagpkUIahEUISgRhVF5JA52zKN0DJV\/HTr0N09lSpxTiaVd1BBFoYRh7gxzv+zL\/\/N7N89m7TVr77X2WmtfZuZ5P5\/5zMze672s533fvb77ub15FRUVEZIiEhAJiAREAiIBkYBIYAhJIE8AZgjNlgxVJCASEAmIBEQCIgElAQEYWQgiAZGASEAkIBIQCQw5CQjADLkpkwGLBEQCIgGRgEhAJCAAI2tAJCASEAmIBEQCIoEhJwEBmCE3ZTJgkYBIQCQgEhAJiAQEYGQNiAREAiIBkYBIQCQw5CQgADPkpkwGLBIQCYgERAIiAZGAAIysAZGASEAkIBIQCYgEhpwEBGCG3JTJgEUCIgGRgEhAJCASEICRNSASEAmIBEQCIgGRwJCTgADMkJsyGbBIQCQgEhAJiAREAgIwsgYcSeDRRx+l8ePH07p16+jAgQOO2pLKIgGRgEhAJCASsCoBARirkpLrRAIiAZGASEAkIBLIGQkIwOTMVGRvIIsWLaLly5dTXV0djRs3jgKBgPp71apVdOTIEZo3bx5t2rSJSkpK1CD3799Pa9asUX+LBiZ78yY9iwTsSGDy5Mm0detWKigoUNUrKiqov7+ftm\/fTrt377bTpNQRCWRFAgIwWRF7bnXKANPc3Kyg5SMf+QgtXrw4BipaSPn4xz9Ol1xySezDTgAmt+ZSRiMSMJMAA0xVVZXax3\/\/+9\/VF5T29vbYlxazNuR9kUAuSEAAJhdmIctjYIB5\/vnnlWaFP+AwLADNhg0baPr06dTZ2TnI10UAJsuTJ92LBFKUgH5\/Q8u6ZcuWuC8mKTYpl4sEsiIBAZisiD23OjUDmIsuukiZmGBaQtGCjABMbs2ljEYkYCYBARgzCcn7Q0UCAjBDZabSOE4zgME3NBT+4IOfzKFDh2jp0qXiA5PGeZGmRQLpkIAATDqkKm1mQwICMNmQeo71yQADRz6EQ1988cUxH5gHH3xQOfyhwJzE2hg2N4kGJscmU4YjEjCRgPaLyK5du+iFF14QHxhZNUNSAgIwQ3La3B00A8zBgwfp3HPPVdFGrGFBT\/ooJG2EkgCMu3MhrYkE0i0BrQYGX1omTZpk6N+W7nFI+yIBpxIQgLEgQTzA169fTzt37hyWYYZ6E5IFkcglLkkAAAgHaQljdUmgKTQz3Pd1IlEYmZBSEJtcakECWi0XLoema9u2bRZqyiWpSEAAxkRa\/HDHZcM1T4IATCpbxr1rV6xYQXPnzlW+RJiDhQsX0tq1a1XuHSnplcBI2NcCMOldQ8laR1QXCqI6AcqrV6+m++67T7KVuzwlAjBJBIqFt2zZMpUP5frrr6eHHnpoWGpgXF5TI6K5sWPHpnSfJ06cGHQ9PuSOHTumvpnhGxvC1Xfs2CEfcilJNvWLZV+nLrORVMONva2Vl+zt9K0eARgLssW3tVtvvVUAxoKsRsIl+ICDs\/OFF15o+XZfeukl5SipBRk9wGzevJn27NkjkGxZqs4ulH3tTH7DsbZbe5tlw6akffv2iQkpDQtGAMaCUJN90GHB4+ed73yn+i1laErg4YcfjoOLZHcBcIE5sapqM\/l89aY33Nv7Dmpru5mQxTgZwIgGxlSUrl5gBjAf\/vCHCeApZWhLwEj7meiO3NrbaH+k+lhlcrUIwFiQdqIPOju0bqE7uSRLEkCyPisPLP6QG1e72BrA9F1AjU3fHQQw4gOTpYk+3a3ZFxNAqnwpye4cudE7AAZ72wrIuLW3sbaWLFlCGzduFJOwG5OYoA0BGAvCTfRBx4u9IPIqlUeejLXUlnct9ebNstCys0u8waZBDYR8Yyw3ivqpXG+54SFyYUnkOcJPL82iNs+19NRTTykzj1nheR9b\/SnyeRvMLqe+\/guosWXrIIBBRYlCMhVf2i5IBjA8x6+2BGhMYYhe7A\/R0215aiw3jYnQO4uJ1p18M21jy0TD1d4AVXv89MpAVya6c72P64praKIvRM\/1\/jzW9jjv2fSu\/Esp1LyWPKPvJL8nj4J5Ywz3ntGA3NrbvK+5D6NjWFwXyAhsUADGwqSbAQweglXh76mWOvMWUEf4\/ZTX20z+3oPEkOEJNsd6CvuqYn8DIEK+KgqfBg89UGivRaVcB47+cDMFPGfuz4J4XbtEC3Qsb7zmOQ16BZ3\/E+urt+S91F\/+3ti81Xs2pg4wlTdaBJjzqbHtW5Y\/RF0TiDSUVAJWAOa5twtpRm0PbT6eR3\/WPOd3T4vQ34Kt9ED72yLlLEgA8LVp9Ll0Mvy6DmDOomuKrlcAgwKIyfNWW957MYCRvZ2FWU29SwGY1GUWq8GLXQswbXmL1Lf5MUdviGsZ4IGH5kDBTBoomBF7Dw98lL5Q9Hd\/uCWuHr9vNEwGhYCnUlenhfSv5XvNocIqeBiNyWpdo\/tIdI\/cpv59lhXuCX9DZgxOfK1WNriO\/y\/o3E+lzd9Xw2idcD+Vep6lAnqV7ABM7eil5PNY0MAMnE9N7Vssf4g6WJJS1SUJ8N6u78ujR5qJnm6Lb\/iqcqKvjI\/Qbc0HqTHU71Kv0oxVCQBg\/q1qBu3tfpzqQvEQeU3RdTSWCihU\/xnKK7qcvKPvsLz3eN5lb1udiexeJwDjQP5GAAMNTLPndqo4dmdM+4IuOqo+S+1FM6lj4BC19P1v7KGr7x4PWsAHHrolvvPU2\/y\/VUg4GR6sEs6jMLWFOylMHsM7PhmJ1hmdV2z4\/mhPSVJJnQx3xt43uxYX4nr0if6Mruf2+Bpt53z9aI\/xWAExkDN+n+j5r1jVsYX\/h\/ADgAHIOAaYsputAUxwDjV1ftPyh6iDJSlVXZIA7+1Fr+dR\/cDgRmv9RNDCCMC4JPAUm5kdKFEamB91fZ86wqfiapd6RtE1hddRSaSPIn0vk6focst7LwYwsrdTnJHsXC4A40DuRgCD5o56fxJ7SOJ\/aF\/wsHy9fQt1Bg8Z9liZf6kCFvyOPuCjQMEP+lY88GOvnX4vcgYaovBRQvxQx+8KDXQAFAAvHgrHgMEIANBHIjBwICpXqhrJhGX1Vqghdv8Y\/7neGjrHVxODmJa+36oxTCy+hc7qqafitv+kpkk\/ovLwk\/Y1MEW3kM\/TaHpvfaE51NSz2fKHqGmDckHaJWAVYOAH80p\/\/D5M++CkAyWBn9ZcoMxHhwZeGSQRQMw471n0rsClhL\/1EYCJRBgDGNnbQ2KVCcA4mKZEAAMNTLDLGzNVMMC80rZaPVC1BVqVicU3U6n\/PHpx4C16M9igQAUPZKOCh\/M53ho611cT017ogaM+dOYrY8Ppv+NeC0bfrw8FY13Uen2x1\/hvvFDj86vXG07X4f+5Yq03+r62aPsyugd9Hf316Av9cJ88Th4X3kMbNd7oby6Q2x8H3qRn+l5WL0EuV+afT3P958TgEQBTG6lQcwOorA2vj963DR+Y2vxbyZdnAWDCs6mp\/+uWP0QdLEmp6pIEzADmHcVED0wSDYxL4rbVDExIeh8YfUOAGPjEpAwwsrdtzUmmKwnAOJB4IoAxMiPh2\/7fux4m1gRwtzBpFORfQbt7fp8UWvAQxsM4Ch5RAPlLfzf9pa8nChihAfU6Awu3zw95\/Ea5IL9Q\/WYA4L+tiMFIlX7CBfP\/2MCZ3qGaT1T4\/v7S160u+WFn1F8I9\/bBwjL1942lVQoAtfL8bNEVNCp0WMmfAaa47SfUVrvOEcCM9d1mDWAis6kxuMnyh6iVuZBr0iuBZACDNQr\/l5MeceJN7ywkb\/39hRW0suwsQzMS17QLMLK3szmz1vsWgLEuq0FXJgIYXPh25EEqavtP5WuBgodlfV6reohqy+zy++g3A3UxrYH2PWgQGFzw8P5l9yn6S3+PAhejggf5BYEiBSkAFPytLfUDETrRHw0FZRip78ff0ddOaGz9eL02QMS\/8f7Y03BR64+o6\/G+viQDkPixnGkbfUTHdGYc6OtPp1150A\/+R7\/4G30gjFXVOS0XLczcWFpJU\/299Ku+lxUUQoaLCt9NL7XeTFNLV1NFKEIMMJNCn1Ah73Y0MOM8nyUfmWtgegEwka8JwDjYa5muynv7kUY48J7xg8Hae2ByhDyefhVGLQ68mZ6Z+P7gB4NQavjCGBW7ACN7O7vzarV3ARirkjK4LhnA6M1IvSWXKUdePES1BQDz0743lPlIX67In0NzfDMUuPADWn8NQ8sHi8oUsDCY4OH\/5668GJRoQ0C5DS0IvKP4NJT4iaARSQQijT3euCE09sQ7BevfTyTe6sJQ3FvVhWHSvxaFGiJoeXj8jzRFIQfjA8y8syhCN1VHQeZbbfUxuPt25Vl0ti9C3+z8qTK5fbb4CoIJD+a6MX2NKrQaYdQTQstsA8yEyDJrAEOzqD5vowCMg72W6aq8t9EvICUcDqg1x8Ai8JLpGTHuj6OR4MgLfxh9RJJdgJG9nRvzazYKARgzCSV5PxnAGJmR4HPxVt\/eODPShRX\/rswdeoCB9mVRwbvpf3u8CeHlxpJK+kDRKKUlOdHnV8CiD\/fUwwpARQsu6gP6NJS80hpVsQBKmnq8sdcZUvRwAuAAeKBo4QOJv8wK2tf2jT64fW5rdsWASiLGcIP\/GWoeaTxzr6zSh1bmiy1vK4gBzAFivt\/1jKrDADOtbDWVt\/8mmnenuFKZkOxqYM4e+Dz5IoOTCervvSdvFp3w3yMAY7Yocuh93tuIMsJDcra\/mBrDAwpgxGk3hyYKnz3egDIlITIJIAOn3o5INDIJie2m+2db3ns877K3c2uOE41GAMbBPCUDGDSrj0YCwDSGXo8zI0ED83KoXUGMtsDscVngXfSpxsGaGVwHeIG\/B4AFD\/NEoZ54qANakLcCpaHXQ8gu+mqrXwEDQ4teDAwn+D3rNDhoX0sktubOqDNwXiSqKdGXSF6EqkrOOA\/r38eYADMY16utgbjxof8F43sJIFNVOqA0M984fube\/2VSNEPqFSeikV6PVZ9D+\/v\/qHxiADDQfgEYi9p+ovLxePPDjgBmYu\/t1gDGM5Pq8jdY\/hB1sCSlqksS0AKMmIlcEmqam0FmXkAMflAwb4AblFSdeGVvp3myXGpeAMaBIM0A5ph3B\/k6X4tFIxmZkeBUeso7hb7fHdUUcIHPhi9SqzQK+vKBwlF0Y0k1Pd3qITap6K9BlMTa8VFtC6Dg2eP59NzxgpiWQ3u9VuPBgMDvt3REtTKHjkedf18\/\/bv59Ost7VFg4etSFWdlaVSrUlkWVFCC\/6eN76Hp46POyayVwfifPHwm7wvG\/LWLT1HYG6bNdWdMTPtnRei+tnr6Zc8pBTDHw2\/TH\/vfUgCDMPZpZWuovH4TdZV\/gooDf6XyyG7bGpiJXSvIb0UD451JxwvXW\/4QTVWGcr37EhCAcV+m2WiR88WkDDCyt7MxXSn3KQCTssjOVDADGPjBwJSkzcqrj0ZC3hdADHw1tAnoEDnzxkCB8uvQFvi8fLvibPpTp09pH\/QFwHJVedQv5NnjBQpakmlZrp3STe8f3xuDEIAKIAWAAjhJBiaADQYPNADw4MJgYiRetKkFH\/TFYKS9Hm2857x21Qd+A2a2vVwadz8b552kYCBIdxyNygLRIU3eZmV2gwkpmFevQtMBhPCBgcYLAAN\/JGThdQIwkzruIH\/YggnJN4OOFd8tAONgr2W6qgBMpiWenv7sAozs7fTMh9utCsA4kKgZwCTyg9GbkYz8YBJpYAAwP6o+h1YejT+bhW8DB819uDSqcdFqLLS3Ce3FijkdyhQDmPjdwVI6VFdkCBGopwUVQAr+Zw0Jt9vaGvVpaWmNOvXy\/0biragIEeXl0dRz42OweSzq92vRsGgtEC29vEH1e\/cL5TGIwb18\/32tCuZgTsP9X1U5oExvDDBIAvg+\/zg62vmw0sAgSzLMeTi\/Sh3maDMKaVLrF8ivy+tjdL89\/hl0bNRXBGAc7LVMVxWAybTE09OfbYCRvZ2eCXG5VQEYBwI1Axg0rfeDwTd\/mJK00UhGfjAAmPGeswb5wCjH3YIqQopzfeHzWZ44XGQIL3jYA1oAL4CER35dkxRaAAsAFmg\/GEoAKICTw2\/6qaXVS62n\/3cgRgLQTJ0yQBWjQzTv4j71P8b3sxcqBoHMRy9qoY9e3BoHMbifvuJeBTEsA\/jB6AEGxwpA28UAAwdenCRuG2CaV5H\/9BlWye6\/J3AeHRv9ZQEYJ4skw3UFYDIs8DR1ZxtgZG+naUbcbVYAxoE8rQBMIj8YbVZePFRhSlrT\/qPYaDh3CTuk8htfKq+l6vComMmEX+f8FH9rLFBmFn1hnxFv0KM0Lj\/7Q\/wBkFpNB4AFkABQAbAcPuynN94MqN+pFKVp0ZRkWhntdag376JeuupD3cr3BmPVmpi++LFjShOz8L\/HqGowgf3zeR0K6rQAw068yFo8jfrVMQ4T\/O+hUfVfj2XhdQQwjastAsx0Ola5RgAmlcWT5WsFYLI8AS51bxtgZG+7NAPpbUYAxoF8rQCMPh8MurPiB8MAc0PjW3HZdaFVCA8UDQIYTm2uNa\/wrbHJCMngtu4Zb+jXwv4mDC4HXsinA38oSGoKQvta7cmUKVGHXGhTkhWrYIS2b7i+Q7X3lR9Oihv3vy1\/Q4Ea\/HwYYFYeyVNRSPCDAfg9M3Y6\/arvr+pcpDGRk+oATRwjwEnskAMGiehsa2BOrCF\/KP70cKP77smfTsfGfMkUYBYtWkTLly+nQCBAhw4doqVLlw5q7tFHH6Xp06dTf38\/bd++nXbv3k0rVqygxYsXq2vr6upo1apVdOTIEQcrW6oKwAyPNWAbYFze28NDmrl3FyMWYObNm0ebNm2ikpKSpB\/6\/MDA1O3fv5\/WrFkTm0UrAMN+MFpHXpiRjvu9ceHURn4wW8puiEXUcKcAmLruokEOvOz78tnfVAxaZXjAL57Um9BkBHhZtfA45Q2ECeDy9C+MT3nmhllDAmBhWGlpDNLrr0adgQ+d\/o3XtKWy2keVY6JRS9NnF9C0WQXqbwDN078oogMvRP\/XlxXL26iihhTEcIEW5jhFFMTALPa1i9uUBgYAc1Ntv4regq8QwtPf5T+HCgeepxLfdJWFF9mRMQfIwotiF2DOrvsy+YLWAOZEzaqkADN58mTavHkz7dmzR0EJ1t2LL75I27Zti90zQGXu3LkKbAA7CxcupMcff5yWLFlC9913Hx04cIC2bNmirteu09z72EnfiNzY1xidAEz65iiTLdsFGDf3dibvd6T1NWIBBg+IhoYGevDBB2nr1q20b9++uIcFFgIeGNdccw2tW7eOJk6cSLfeeis99NBD6gGj\/ZCDIygcQo2KkSOvUTi1kR\/Ml0s+Rg+1d6iQYC6JTEjIgeLv8yvfEG1hJ1c4xT7665pBQ9TCywPbRyXUuLCm5eKLehW0MLD87rnOGLjY2TyAmnfPL6GPXltOLS159N+\/LBkEMuj7nrtb1fjZuRe+MPPmnCIAmxZgEIEFJ14GGCSyQwg1\/F8AMDVdr5I32Ew9VQtVFl4nAFN7fDX5gvGHcxrJoK9gOjXVJDch4cG7bNkyuvfee5X2BGtvwoQJcSACODl27JhapwCeDRs20I4dOxS4cDGqZ2dehmodN\/a1AMxQnf3B47YLMG7u7eEjzdy7kxEJMPwtbe\/evephgAdDTU3NIJU9vuXi2+3GjRsVwPDf\/MCwooHBlOsdeQcKZqizkcz8YAAwL\/QF40KpEwHM7mkR2vf3wc67rH3Rai94GQJeENkzprCfzOBlJbQgFWH6\/XOd5BRaEm2DjywqVyDzo8dLB0EMTElTZoRiWhj46WDs8IPRAsxN1REaV9RNP+yIhlEzwCAHzKSSW1QWXhQ+RsAJwIw5\/gUFQ2alv2AGtdYkj0IyAhjWtnD7eoDRamwYuOfPnz9iTUhu7WsBGLMVPXTetwswbu7toSOtoTfSEQsw69evp507dyptCh4MU6ZMMfzgZ7+E5ubmQe8zwMARFBEtiQoceQNt\/0PFbf8ZuwR+MHiowrEUxSgfjFEodaIoJCRwY58Q7TgQoTOe8ujbP50waHiAgGve2UyPPV6a0EH3qg92KWfalqYQPbqtyZG2xcr2YIh5YHt53JjmXdyr\/GHYFwZjv\/o9zYM0MPB\/8fhxSnc3fbS4UJmQoIHhk6iRAwZA4QbAjD6+Up2pZFa6R32Ceso\/OciExObJzs5Oeuyxx2jBggW2NTCJINxsbMPpfQCMG\/taAGb4rAq7AGN1byOjd3uN5HjK1ooRgEkCMFqwueiiixKakDB55eEnVVI0o2LkyGt0OrXeD8YoEglZeFeX19Jlr8aHURsBDJuPEI6sjzqC9uUbNx5Vmg5oPIwKfFxuuPYk\/e7Xp+j\/7W7L2Br94sZaygsU07Z\/PePPg7FAC6QFGNbAXDuli+ZP7FY+MNBE\/bI3qhUBwMCJV5\/EDiY8PgcJ17XlLaI2z7X01FNPKb8os8LgWlr3eUsA0188n3oql6fFB2bt2rXKlARz6Ej1e+H5sgowZvtaCzBPdNbTE10NZktC3s9RCeB4getKak0d6Hn4qe7tYP4s6qpJfM4Z+6phn4pjvfuLZMQCDB5UZiYktqfjwQCfA\/jKHD58OPag0Gpg4AODiJZEANMTmq3yj3BJlA\/mNwN19Ezfy+oyPkVZG4nEAIOHtfb8o2QAs\/WnEwble2Htyz1fG+z0i77Z7+RnT7alBC\/waYFz7vTTDrr4H\/4yzY1BamkKKhOUWXn3ghJaensVYWwces3j4XuBD8wls0\/RbfsriAEGUUgAGPi\/3FhaSaWeDnoz1ED\/5J9Ab3c+FEtiB9nn59fH\/JbYTylVgMk\/8VnKCxrPufYew\/mzqb\/6a6YfokZRSPoPQH0UEvrhyCXuU+9sbibv4fK+VROS2b7WAgxOnZbDG4fuCnl\/YYU66DHVowTc2NscHSiRgelbPyMSYCBOK85+2m9q1dXV6ts5Q4\/2Qy6ZEy+uM4pEYkdevR\/MUc\/YuIMd9ZFIfMqyFYBh3xB9CDLGhCgeT0+Qtm2Pd\/rlpaYif8p6aO2yY5ZWH0DlI4tG0XsWlFJL4wBFKEKHXo7CSlV1gCprAuo3YObR7zWbmqK+\/5NJcb4weoCB9mXUmF5a94dRKgJpIH9AnQv1wKQowMBX6OXgQZrqHUOVkVOxHDCASGi\/+BwkjM9uFJLnxK1EIXOAieTPpsiYr1v+ELUkcLnIUAJu7Gvt3sZp1HKY49BdbHZNSE73Nr7w3njjjXTw4EEVLSgamPSsoRELMNpwS23ODX0YqtMwau0DEg9P72mfiZBvjEqmpvWDGVv4fwg\/2oR2cOT9WVePOtuHC\/KbcOp8fg2ah\/\/7WjQvCpdkAAPz0Qu\/9RuGTLO55tvr601BA33Bb+U9C4oVtPzumRba+3j8+U08nsrqAN1850SaPqeEzNrWA4zehPTFhcfoeCTq94OjBJ7qiCbN00cgXVs4j3r6nlXvIYkdZ+Hlc5CcAEyo\/jOWACYvfzZ5qjYLwKTnMyyuVTf2tQBMBiYqQ13YBRjLe7v0evKUXZ9wb4sJKb0TPWIBxg2xWo1CQl\/6SCS8ZiWhHfw3moOVcZFIyDD7SH1Anf2jBRh9FBIDzG3bp8bdLvu\/6B1l+SIV8TOp05L2hc09e3edSAguell\/afNUqqopSNo+AEY7PjjxfugjvcoHhsePIxNwWCUABmdDIRcOHHiNIpAAhsgBU9r8\/bhzkJwATG\/DZyhiQQPjCcymfAEYN7ZcxtqQPDAZE3VaO7ILMFb3trfocgqU3yEAk9ZZTNy4AIwDwacCMIhEKmzeo5KocYEGxuxgxyvy59CV+eerzLJcADB\/6vDHJbNDHpiTbfHHCCTSwJgBDHKu\/PZXLaa+LzAbbd4xgX7761Z65P6\/W5bkey6vUJqYz37iqGEdblcLMIiGuvjSaEZenM+06mPHYjlvlr8zmsQOMvjVQD3Ven1xEUjaEOqCzv+JO0bACcB0Nt1KYQsA4w3MpuIKMSFZXiA5cKEATA5MggtDsAswbu1t0cC4MIlJmhCAcSDfVAHG1\/ma0gBwgTNpU341vdFxX+w1JLT7ad8b9OLAW+o1oyMFjHLBIHz4rHB8IrtEAMMAoHWS5QHA12Tl8lP0yP3HTc1H0L58ZFEZffmWV1OSIkxJWx6eldCMBCdgRCJpAQY+Oa+1Rs9w0jrwsv8LTGqJHHjfbP8mQa4IoUaBDwwfI+AEYJpbllHIAsAE\/LNo9OiNYkJKaZVk92IBmOzK363e7QKMW3tbAMatmTRuRwDGgXxTARijUGorGXlHe4oJfjBGkUjaUGqYT26qptgBh7gtDqPWRyGxBiYRwEADY+ajgva\/cG8NUSRE31r7RkpShA8MzEiJ+oBPzaVXVqooJBS9Ay\/8XwYKgkoDw\/4vf+qOOvBCTjhCQHsGErLwTitbowAGvkfaYwScAExd63IKhszzwOT7Z1JNeeJQy5SEJxdnRAICMBkRc9o7sQswsrfTPjWudCAA40CMqQKMPpQ6USTSKe8U+n73M7GR6SORjEKp+RRmPqGZK+\/5UFNcCn68nsyExLBgBWBgPnrt5faUzEfo\/6Y7J9J5c8oS+sB8ceNYOtk1KpafRms+4rHzkQnQwCTyf7kyf446A6lj4DUFMDiPqqv84xQedV5c4kG7UUhHW++gYNgcYAr9M2j8KEl25WCrZbyqAEzGRZ6WDu0CjOzttEyH640KwDgQaSoAYxRKbRSJxBl59ZFI+iMF9JFIfBo1zgZq7PHG7goaigMvjxqUyA6nORul7EfFDeua6GePN5vmbEGulnC4PyWAYfMRQqmNcsIYmo9uP0VNAwUKxJC\/5sPvbjbM\/3Jf2xn\/l+93\/0ppruD\/Uuo\/LxaBBO2LNomdEw3M6ye\/QANh86MEiv0zaFJZ8qMEHCxDqZoGCQjApEGoWWjSLsDI3s7CZNnoUgDGhtC4ih2A0YZSox0W+MC1AAAgAElEQVSrkUi+SK3Kb8IFjrxPt\/hV7hMuRsnscJRAQUdg0EGO3\/j0ETr8ms8wC++Gdc30u2dOmjrxMmzAhMQ5X5KJE\/DypW9MpdamsDIfGRWVhTe\/NJafhsOn2QymNR9B+\/K2Z4CebjuT\/4UT2P2q72V1hADy7EwsvllFIMGEBP8XbRI7JwCjzeGT7L5xiCQ0QFaTaTlYklLVJQkIwLgkyCw3YxdgZG9neeIsdi8AY1FQRpelAjBsptADjJVIJKMjBeDIG+4bFReJBCfWvzXGRyIBYHCgoz6UGongvO39hgCDMOpwV7NKOGdWltxeSdNm5Zs68jK85JGHvr2hXiW005dE2peKMWH6yn9Mjpm+9OajdxbFn0D9zc6fKufn9\/nHKYDBEQ1FbT9RZ1FB3tocME4A5g\/td1Nf+Ex+nkSyGuWbSnNK7hKAMVtMOfS+AEwOTYaDodgFGNnbDoSewaoCMA6EnQrAoBujXDAwaRz3e9Vhg1wQMaM9UsAoEgmHOt5YWhV3JhIikeALo\/WDAbwAYvTZePk055V3jRkkAT44EVl4jUBDWwEhz1+8t5YiFB6UxA7QUlUToPdcXkmXXl6hopoARUZtcjut7YUx7YtR9t2pZ3cp8xHuaWZ1L+H4ANx3o+cU\/bK7XZ1ADfPbZ4uuoFGhwwQHXo5A8gSbB4VQOwGY33bcS73hVtMVNNo3hS4sXiEAYyqp3LlAACZ35sLJSOwCjOxtJ1LPXF0BGAeydgtg2otmKk0Bl4nFt5DZkQLJHHn1fjBGjrzoK5kfzAPfbVKwYeXsIj7\/CD4xKM2N\/eo3jg5AAbD8bHdb0rY48uiB7aNi5x+tuP0UVVRH4pLXIfPuK61+FX30SCMRRx9pzz\/a3fv7mP8L+p9RdLPKwDtQMEOZkHByOE4Q52LXife5zs3UEz5puoIqvOfSJcWfE4AxlVTuXCAAkztz4WQkdgFG9rYTqWeurgCMA1mnCjBIZhdo+x9lyog9PEsuU2G9L7XeHHst0ZECZo68aMDIDwa+Iu2NhYP9YG48SocPehOakaCJSZRszkhsDDKVY3xRcGkKKniB5iVZ4Wy+Wqdi1gKx7wtMXlMmdhHgDFqlfz6vI5a8bmzBgPIP4vDpt4KNdFPhO077v9xC1d5pMYDprL1N5YDRFrsA84vOb1G3BYCp8k6m9xbfKgDjYK9luqoATKYlnp7+7AKM7O30zIfbrQrAOJBoqgBT79lI1NUSl8yOtQJapzGORIIvx8lwlxohjhQwcuTVZ+Q18oNhM5LeDyZZQjv0CS0MNDBWfGHsipHh5en\/Loqdy6SS6d1+il5rKFbQxaHTrH352sWn6MW+ED3SGE1eh+ijhtCAMh99v+sZQvj0mMhJlSBwaulqqul6VUEjQqj7y9\/rGsDs6XqAusKa8xwSCKHGO5GuLFoiAGN3kWShngBMFoSehi7tAozs7TRMRhqaFIBxINRUAcYomR2610ci4TU4nu7u+f2gjLzaIwXgyPvBwlGmfjBoL5kZSQsPWnGwFsRKThg7YmR4OfBCQZwW6IYbOmnK1AHa+l8TqKXDr07OHl3RH6d92Xw8j8b6iW6q7adPNb6l4KXU00FsPoLvS0vfb2P+L\/7eg8p85M0Px+WAwbjtamCe7NpBneFTprc+1ns2XV20WADGVFK5c4EATO7MhZOR2AUY2dtOpJ65ugIwDmRtB2D0yezQPSJj3urbqx64XPRHCuB1KwntOB8MInXgK8IFZiR\/j4++\/dMJcXeMtPwfvbhVZb1tbT2TP4YvQgr\/qVMGLGXmTUWU8Hn56LXlpIcXhiZoXn73Wlns3CPWvsB5F6HT0L6w8y4Ob4T5CMAHjRXCp5H\/BYUT2LGc9RFITgDmh10PUUek3fS2x3vPoo8VLhKAMZVU7lwgAJM7c+FkJHYBRva2E6lnrq4AjANZpwowRsns+MGqP9TRyJEXidn0fjCJTqbWh1OzGUl\/rAD6hzOvHiS0YnETYuAn8+75JQpe9JofjjoCuLDpaNXC43RigNSxAez7wtoXAAx8X2q8frq1rJRgcoOpbY63TPm\/wHxUnlep\/F84aaDegdcJwPygaye1WwCYCd7xtKjw46YAg3NTli9fToFAgA4dOkRLly4dtDofffRRmj59OvX399P27dtp9+7dsWtWrFhB8+fPp1WrVtGRI0ccrGypKgAzPNaAXYBxe28PD2nm3l2MWICZN28ebdq0iUpKSqiuri7hhz4eCosXL1Yzp3+ouAUwRoc6AmDgC6PNyGvkB4Nw6jmeKrrj6JmEdomOFUjkzMsh1drDE\/VLlSHmZ0+2mSa4M1rmDC7vWVBCeb58OvBCfsznBdfzIZKvNUb9XlCgHZo35xTd\/cIo9T98X57qCKnkfTh52uPvVgAD81Ewr16dfwTIg\/kIP1r\/F\/Y10h7iyOO0a0La0bWLTkU6THf12d5xtLjwo0kBZvLkybR582bas2ePghKAyosvvkjbtm2LA5S5c+cqsNEfEsfw09zcPKIBxo19DYELwJgu6yFxgV2AcXNvDwlBDdFBjliAwQOioaGBHnzwQdq6dSvt27cv7mGB+cRDYcmSJbRx40ZqbGyMe8BoP+RKIs9RVfh7pksgUTI7o0MdjRx5jfLBGIVTYyBG0UjJtDDwMxlT2B87QNHoZnAm0VUf6laRRb97rtMSyBiBy4E\/FMSZqxheIn6PCplGYah64nARPXm4OC7vS22A1MGNnJmYnXdRj81H\/eGWOP+XRA68qGMXYL7T9RNqC3eazvskby3dXPTBpACDB++yZcvo3nvvVdoTgPOECRNozZo1sfa3bNlCx44dU+sUwLNhwwbasWNHbG2+9tprdN5559HatWtHrAbGjX0tAGO6pIfMBXYBxs29PWSENQQHOiIBhr+l7d27Vz0M8GCoqakZpLLH6yjah4h2jlPVwASpmhBKjZT2cCqNaQBOh1Lr01frHXlxvd4PBq\/hXCTkRNEeKwDzytx8r3J81ZZEvjC45hs3HqXWBoolkjNaz4CNeRf1KpBBYZhRfzedya47fVYBVVb7VZZe+Na8cdhPT\/+iaJCfjRZetu4Zr5x2Oero2ePRrMJ8qvY3jufRn7pI+b5otS9w3sXhl0hex9FHCEWf4H+PMh+hJHLgdQIwW7r+KxYllmzvXxGYQ1fkz0kZYFjbwm3rAYY1NldffbXS1gDIFy5cOGIBxq19LQAzBJ9kCYZsF2Cs7u1zvNV0W9EVpubh4SPR3LqTEQsw69evp507dyp1PR4MU6ZMGaR6x+tnn302jRs3ztAvgQEGSdHgW2GlGGXjRT2jSCQ48r4calfOqVzwkH5joIC+1XbmLCGjaCR25gUAAAS4zK4YIEAMO8lqx8zgANjYtr086e0wyOAinFcER18uLS15lJfnUdBy+E2\/8q8xKnzOEaBFCy\/wewn5wgq+AC9w3K0qHVB5X2AeQ+QR7r8+NKCcdxE6fTLSqcxHyGgMZ2iYj\/j8I5ZvefhJKo+c8RnhMdnVwGzq\/Dm1ng5zTyasi\/yT6PrCiwZ9yLE\/S2dnJz322GO0YMGClDUwzz33HH3qU59SplAuifxnrKzPoXwNAMaNfS0AM5RXQfzY7QKM1b19rncMLS+eLwCTpSUjAJMEYPCAKS0tVWBTXV2tfGZYa6P9kMPfiR6O+nk1SmaHaxCJdGzgd8p3g4tRQjujc5EuCBQpP5CVR\/Poz9G0MarAT2S8Z7AW5topXXTdlG4ycujl3DDQmiAyKR1Fq8X52QsVsZOyAVBIWIeQafi94FRtjHX+xG6C4259P9EDkyP0l+ApBTC457N9EeW8C7lc5Rutcr8EPFVx5qNkDry4v7a8RdTmuZaeeuopNcdmhcF1fecvqTUc1UQlK1O9VXRH8T+l1QcG\/ev9YszGNdzetwowZvtau7ef6KynJ7oahpuoRsz9XFdcQ9eV1FoGjHTs7REj7Czc6IgFGC2MJDMhsWkJPgfwlTl8+HDMpKTVwMAHxkeNplMIgPF1vhaXzA6VjM5EMvKDwbVGZiQ8zOu6i+IOd6z1k0r0ptfCoA1oYZBHhX1OtANnkIBPzGOPl9Lhw2fCsU1v0OQCaF0+dX0Hwd\/ldwdL4+AF4dzItssh0+yzw+axm8acObQR3XDo9FuhBlpU8G519hE0MJDbOfnXxMxH8DHqqVo4KIEdD5Wjw1IFmDUd+6gl3GMqkum+CvpS8TzTD1GjKCQ9lCSLQhKAiTrmWzENJ9vXWoBZd\/JNeqXf3M\/JdBHIBVmRwPsLK2hl2Vmme48Hx5\/pbu\/trNz8COh0RAIM5jVVZz\/USaSBserEizYSJbODk2l3+SfijhRQH6S6hHZ4zciMxM68ei0MH\/CoPx+J\/UoOHS8clBsGfTDETB\/fo0xBSPNvlCfG6h6B1gWnXMPUhD5hwoLpSNsXNC8MLzy+p9tIQRnD2A87mumHnS1x2pdzvDUx593O4KFB5qNk\/i\/o364JaVX7\/1KzBYA5zzeavlzyLssfolZlKtcNloAb+1oLMLc1H6TGUPRsLylDTwJ2TUiyt4fGXI9YgNGGW2p9BvSOu\/j\/sssuU7O5f\/\/+OIfeVJ140QbMFR3h98e0A7xMOBJJ78gLX47XKRDnBwNzyZX559PtzQ0qhT4XIy0M3oMWprnDr3KpaAv7wySCGFwLk9JNlzcooAHA6MOfky1zNhVB61IRjYwmmIyQ54UL2mWfFy28IGQ67AspvxfAC0AMZx4h6y6bzOD7Au2L1nlXbz5CPzDPGSWwi8k+bxbhmIdUNTB3nXqemsPJz3lCHzN85bS29B0CMBn4THRjXwvAZGCiMtSFXYCRvZ2hCXLYzYgFGIdyU9XtAEyiZHZoz8iRl81I2nwwuNYoqV0iLUyi7LxoxwrE4DrkZAHMQCOjoOB0ZFFrqyf6\/8loFt8p50aBChl1UaBlASABWl4\/XhgndoYXJKoDvMDnReu0u\/JIHtUPEOlNR6vLa9WxAYg80mtf9NFHZv4vGJBdDcwdbX+gpnCf6VKa4RtFd5clj0IybUQuyKgEJA9MRsWdts7sAowbezuZuTdtNzzCGhaAcTDhTgAG4b3eYFNc79AU6DPyKlAyMCMhLBdaGO3ZSLgWWpjwQFFcYju8Dgi4qTqa0VZ7xIAWYrTRQInEAuhAjhYUAE1VWVBpZ1AAKvi\/ud2nwMUIWnAdtwGfF4xFCy\/XTummmdW9ymkXDsmclI9NR4A0ZN1FZBZrXyZ4vCrzLgo0VmP6GmM+Rsnyv\/A92gWYFa1\/sgQwM\/1ltH7UTNHAONhrma4qAJNpiaenP7sA43RvI49ToqST6bnTkdmqAIyDebcDMOguUSg1HHlhSnqp9ea4URmZkXCBkTMvm1fgNwL\/EW3hqCSO8NG+B80HzDbeYLxzrQPxGFYF\/ABcwp4I\/fpEQCWpQ0H\/C8b3xiKOAC\/s9\/KLnmjUEY4MgOPuiwNvKYAZ7SlWmiicewTflxLfdHX2kTbPjpn\/C\/q2CzDLWl+25B8xy19KG8unCcC4vZjS2J4ATBqFm8Gm7QKM072dKOnkgQMHMnj3w78rARgHc2wXYBCJVNi8hwo698f1nsgPJlE0Eo4WgD+MXgvDeWHgPwITDBf2JTEKreZrOMQaGpRHfl0zyOxjV1wAl3fPaKfp43ritC4ML5zrhTUvGCtCpskT9XtB0YZN43\/4vui1L3z2Ed5n85FZiLtdgLmtxZqD52x\/CW0afa4AjN3Fk4V6AjBZEHoaurQLMFb3tgrTLh4cpp0o6aT27LI03O6Ia1IAxsGUOwEYo1BqDMXIDwavG51OjdehgfhZV4+KzNEWHPJ4otc\/yJTEWg34m+iz9HJ99kOBf4wyBWnCnVMRF5uKpk3ooYpRAxTxREO6tSYs1vzAYZd9XrROuzguAI7K7N\/Djrt63xd23i1t\/n4MDPn8I6MDHLX3YRdgbm5+nRo1TtSJZDMnUEzfGD1JACaVxZPlawVgsjwBLnVvF2Cs7u3LC8vprrLxg\/a2aGBcmkCTZgRgHMjZLsAglLqvr1aZOvQFJo\/6vFaVz0RbjA53xPushbmh8a24iCQ2JemPGEAdrSZGDxTaPgEX8ElBPhYUhhn8RlRTS7svboyVZUGVMRe+MYAXOPw2dXvp5ZN+eu54wSDfG9b2QEukhZeryqP5XmA2+kt\/t6HpCHlf+NgADALyqfZOi4vugkkuWHJewvwvPHi7AHNj05txMk+0lM4PFNG3Ks4WgHGw1zJdVQAm0xJPT392Acbp3hYfmPTMp75VARgHcrYLMMkikYwOdsQQ2b8Dvh\/wAdEWo4gkvJ8oQ68WYt5ZTMQHJiYSBfun4H1k8E1WoNlBgZbFCFrwnlbDo\/XVAVgZwQuijjjjLurDbPax\/Kl0tPNh5fvC2heY5KCBQbFqPsK1dgHm+sajVB86c\/5TIrm8I1BI360c\/C3NwdKTqmmWgABMmgWcoebtAowbe1uikNI\/yQIwDmTsFGCMIpEwnERmJDjzNuWNVuHD2sLHC8DcAo2FtrA\/jD7BHV\/D0UkADyPnXiPxAECiIBKOvd3YEw2nZoBJVA+OuoAgaF3Y3wXXKngZHaKrKkL0y+5TMZPYjSWV9NHiwljUETvu4rwj1lLpM++iPavmIycA87H643TCAsBcmF9AO6pqRAPjYK9luqoATKYlnp7+7AKM7O30zIfbrQrAOJCoXYBBl4kikfBeIjMStDCTSm6hR3r+rEKItQUOrUV5FTGHV+17cH5FBM\/mtwNxZyXxNewwi9\/QxkBzkgxEUhUZa3AYXJ4+GX9ydrT\/MFFeiL516kQMwgAvN5ZWKXhhrZPecddI+4LxWQmf5vuwq4G5+sQJqgtFYS5ZeVd+Pv1gzBgBGDNB5dD7AjA5NBkOhmIXYGRvOxB6BqsKwDgQthOASXQmktIIlFymzkbSh1PjvURaGNZMQAMDTYy+AGJgUjIKr+ZrWRuD\/wEwTx4uijvJOhVRAVrgBDyrYkD50PypixQ8Pd02ODKK4eWLrf+I+ZSw0+6v+v5Kz\/S9rLpmTROHTeM11r6Mqv96LK9OKuYjJW+bmXg\/UNdEx4PmAHNRfoAerakQgEllAWX5WgGYLE+AS93bBRjZ2y5NQJqbEYBxIGAnAJPMkRdDSmRGSuYLw5E5nPRNf2us0TBy7NVeqzLfjo6adVDgz4KfV1sDBFORXjvDJiUACwrMRPw3TEV6jQuuYX8XJNerDw0o6OJjEYzgxch0lEj7kor5yAnAXH681RLAXFzgpx\/WlAvAONhrma4qAJNpiaenP7sAI3s7PfPhdqsCMA4k6gRg2JE3kR8MNDBN+dX0Rsd9g0aIdPn40R8vgAs5Q6+RPwzeZzjQRv4kEgFDBo4igLOvlYJ2oW2BpgUFWhd90eZ40fq7aMfHyerwGuAFUUfanC94nY8N0Gpf8DpMcJGCStPoIx6XXQ3M+99up+PBM35AieRzcYGP\/mNsiQCMlQWUI9cIwOTIRDgchl2Akb3tUPAZqi4A40DQTgAG3Sbzg2EtgtZcoh0qjhfQPuS173FodSKIgT\/M6lFj6YL8QjLTxmjbBXjUBojGntbM4Awj7d9GsKKvjygjI60LrmMNkdZsxFD2Pv+4WNQRXmPtS1HbT6i47T9j3aRqPkJFuwBzxT+6LAKMl3aOKxKAcbDXMl1VACbTEk9Pf3YBRvZ2eubD7VYFYBxI1CnAJPODYU2CUU4YvMfZeTmxm\/424Ox6jq9GmWb0kUl8LQND\/UCEnj6ZR480RbUmbhe9uUivdUkGL+z3cqLnvwg\/XOALpM26y6\/Df6inaqFl7YsTgPng0R6qC0ZMxXVRoYf+fXyBKcAsWrSIli9fToFAgLQnpGs7MArN1Narq6ujVatW0ZEjR0zHJRckloAAzPBYHXYBxu29PTykmXt3MWIBZt68ebRp0yYqKSkhKx\/6eHCgLF26NDaLTgEGfjAwJY05eoPhymBn3kRaGDzES\/3n0Tc7f0onw4NtNQwxiXxi0Cm0MR8sLFPRPuyv8qfu6EGKTgqgBWanD5VH1G\/4uRiBC\/ePUOk\/DrwZc9hF34ngheFNe+YRj9XK2Uf6+7KrgfnIkX6qGzAHmLmFHnroLH9SgJk8eTJt3ryZ9uzZQ0g3jvX24osv0rZt22LDNUqOtX37dvrMZz5DO3bsIJyzos0A6mT+hmpdN\/Y17l0AZqiugPhx2wUYN\/f28JBkbt7FiAUYPCAaGhrowQcfpK1bt9K+ffviHhba6cKDY\/HixYO+FTsFGDM\/GIwBD+RWb56hLwzexxEDx8KhQblhePzsE8MHIiZahgwSHygaRbVefwxmcL0VoGFgqfVHiH1mAC1wzP1Fdzv9sufUoK7RJ6Kj8vP6CWYjbYI+I6ddNADT0bSy1VTW\/bdY0jpuOFXnXa5nF2A+9laQYEYzKxcW5dGOs7xJAQYP3mXLltG9996rtCdYcxMmTKA1a9bEmjdKT\/7KK6\/Q7NmzqbS0lMaNG2cJxs3GO5Tfd2NfC8AM5RXgDsC4ubeHjzRz705GJMDwt7S9e\/cqaMGDoaamJk67wlOFa1evXk1NTU1UUFDgqgYGfSTzg8H7ZloYjkp6K9iQEGI4OglAwen5ky1FhpkL8otU6DUX7cGQJ\/qJxgai73C0EtpHgaYFGWqNoAXva7U+GPfu3t\/HaZAYXvrDzfRK2+q4ofKRAXrHXVyUqvOuU4D55zco7rDMRDJ9ZxHRA5MoZYCZO3du3HozOiDu6NGj9K53vYseeughpbnBNSha8Mm9j530jMitfS0Ak575yUardjUwbu7tbNz3SOlzxALM+vXraefOnbEP\/SlTphj6DrAqH9+G9ZDjVAODRWYWTs0P5mRaGE5w93KoXSV9MyocyQO\/mGQmJaO6AA6ATK33zNlHNb6oJ29DcEDBCjQtiXxtuE2tlgdaF73JCNclgxc2HWkPbOS22Xm3Kvw9Kok8l9L+tauBue6Q1xLALK0O09LqyCCAYX+Wzs5Oeuyxx2jBggW2NDBYu5\/73OfUPWvNTCkJYRhcDIBxY18LwAyDxXD6FuwCjNW9\/Y7iCN0\/OWzq3zZ8JJpbdyIAc\/pbqxHAaB8GRloaBpiCyKuEE4\/tFH54JgqnRptsGtE7smr7Y01Mosgkvpb9ShL5pNi5B7M6DEA3llYqcxHABePU++3w2Iw0L4lyvnDfVg9uNBqrXYBZ\/JqP6vvNHZ8\/ODpMa84Kpc0HBo6\/Wt8ZmEZHqgbGCsCY7WsBGLMdPXTetwswVvf2BcUR+u65QQGYLC2JEQswcOA1MyHxN2Tt3GijQxhg8H55+Ekqj+y2NY1m0UhoFKnxu8s\/QYkcenENayiSmZNYywFYuDL\/\/Jhz7S962i2drJzKDWpNRYAVHH8AXxcjh2P21TGCNPZ7KQxH4k6bdkP7gjba8hZRm+daeuqpp5Rjt1nheb\/hbwFqsAAwF5SE6dtTBkw\/5IyikPDawoULae3atco3RqKQEs+OVROS2b7WAswTnfX0RFf8sR1m60Pezx0JXFdcQ9eV1JruPR5xuvZ27khkeI1kRAIMpjAVZz9cb6aBgenCR422VodZNBI3Ch+PrsCYQX4h2k6t+MTw9TDXMMjgNdbK\/KW\/x9QcZHSjABY4AF8QKCT2nwFMvRlqMNS4aGEKeV4ALzikUVsALxOLb1Yh00Z+L7gW2hcqrrStBWNn6lQB5tMvF1gCmPNLw7R1Wp\/lD1Fbi0gqKQm4sa+1ALPu5Jv0Sn+nSHeISuD9hRW0suwsy3uPAUb29tCY8BELMNpwS61WJZETZDKAgc8FAMZJMXPmRdvs59Ex8FrCqCRcx+YWaDrgE6M\/+NFonHqYYaCBXwv8XKL\/BwdVRTI8lCi4RB1+Wdvyx\/63kvYN52Ik3SumHkN4QVucbRd+L\/7eg4P6d+L7wo3ZNSEt+UshNfSZm5DOLw3RfTMEYJzsD6t13djXWoC5rfkgNYb6rXYv1+WYBOyakGRv59hEJhjOiAUYN6bHDSdeHke9ZyOF+jyE3CbJCvvD\/L3r4UHaCm091lwgT4yZX4y+P4YZvH6ut4ZGe0qUc62+sCnoZLiTTka66M1gQwxekt2DFpZY6wK\/F31heMnv3B+XbVd7nd3II20bdgHmpj8VWQKYOWUh2jKz1\/K3QDfWprThTAKSB8aZ\/HKltl2Akb2dKzOYfBwCMA7myU2A4YeoUXI2\/RCt+MNwHfaLAWwYRf04uP2Uq2rBBcACc5E2u662QT7vSX9UQBx4nD61Gw7UcKS2W+wCzM0vAmA8pt0CYL45u0cAxlRSuXOBAEzuzIWTkdgFGNnbTqSeuboCMA5k7SbAYBhWQqp5uPD7QI6YZE69fC20MQAZQEE2QCYVcOGxTvC\/h4ra\/pMKOvcbzhBMR6dqv0qF3lccm+9sA8wfSqix1wLAjArSN87vFoBxsNcyXVUAJtMST09\/tgFG9nZ6JsTlVgVgHAjUbYAJUjUhIskoz4nRMBlizMxJRiBzKtxOLwwcpbeCjZZ8ZFIVE6AFPi7n+mqUo7CZxgXta+ElmdkI13LYdG1og23nab4nuwBzy\/Nl1gCmPEib39EpAJPqIsri9QIwWRS+i13bBRjZ2y5OQhqbEoBxIFy3AQZDgS8MHqiJzkfSD5fNSclyxOjrMChAK4O\/WSuD657pe9mWRNhHBtDyLv856iBJFICLUXSR0ZhwRABCpRM57MaA47TpyE7SOqObswswn\/lduSWAmV0+QJsv7BCAsbWyslNJACY7cne7V7sAI3vb7ZlIT3sCMA7kmg6AwXAQkQTTCR7kVgofN2AWnWTUlh5mcA2Ahh1zW8PREFKj3C3QrqCMziuOA5a+UBRa+sMtCmDMCvu7eINNCUOluQ2OOnIj8isGRHmzFDimGkZ92\/+OpsYer9nt0ezRA7TpXacEYEwllTsXCMDkzlw4GYldgEnX3jY6pNXJ\/Y30ugIwDlZAugCG85JYcejVPtjhE9LjyUvqHJvsdgEzAYGGOVMAACAASURBVE+lOuGa\/8734rUqBSL4zYXBBLACUOkMvkb4uzN4yLJE0R7gBZqgZM66+nvM80VoQmiZ5X7MLrSrgfncbyotAcysin762sVtAjBmE5FD7wvA5NBkOBiKXYBxe2\/jtHkcGowDV3ft2pXw4GAHtzoiqwrAOJj2dAEMhgSNwECo2lQjoR0+tBMIs4Z\/CADj9fb7LGlAHIjAVlWtUzG0LmYmI3SCe8N9RQoqyQ2\/F+3A7QLMsufGWAaYjZe0CsDYWi3ZqSQAkx25u92rXYBxe2\/ffPPNhDPPrr76anrxxRcFYFyaaAEYB4JMJ8BgWHDozettMc0No78Fhhg89JPlWXFw67aqas1V8HUxc9TVal56S95L\/eXvVRFHTkKmjQZuG2CeqaWmbnMT0qzKPrr30mYBGFurJjuVBGCyI3e3e7UNMBb39qLp7bRounX\/NjEhuTvDAjAO5JlugOGoJGSgNUtwZ3Qb7OCL9+AfA5hJxcTjQDRxVfUaF9wPQqShfTErgDCGl5Lwc7bPm0rWj22A+cVYauo+c0J3oj5mVfXRve9tFIAxm+wcel8AJocmw8FQbAOMxb09\/+wuun3uYO2q9qT5devW0YEDB9RdCMA4mEyDqgIwDuSZboDB0Pjhahdi0AZApq\/kMmWG4XBmJJGz4mBrVzyAllL\/dKoIXKp8ajB+f+\/fqKDzfyyBC\/rNBLxoZZyqE+\/nnx5vDWDG9NI9lzUIwNhdTFmoJwCTBaGnoUu7AJOuvS0A4+4kC8A4kGcmAMYtiNECAU61RmGYwd+JMuJaFY\/WARgHSgJaoGHxBJtVRFWihHSJ2ge8dJd\/nIIl51G6NC\/ct10NzOefmkBNXRY0MACYBfUCMFYXUw5cJwCTA5PgwhBsA0ya9rYAjAuTqmlCAMaBPDMFMG5CDN8uazfCykRzWQxo8EfHwKGYdiaRliYKLNGoJY5UQl1AC3xbvKfBxY54Ocsuoo3S4fOiH5NdgLn9v862BDAzq3towxUnBGDsLIYs1RGAyZLgXe7WLsDI3nZ5ItLUnACMA8FmEmAwTPaJsRq5Y\/XWAAxhXxX1F8xQVQYKZqr\/8bpRYc0KAwt+w0SE141OjLY6DlzHfjs+anQ92ijROOwCzMo9E6mp01wDM7Omh+7+QJ0ATCoLIcvXCsBkeQJc6t4uwMjedmkC0tyMAIwDAWcaYBhicGYSHrpWcqc4uL2MVmWNEMxb5eEn0+Ks6zbA3PnjidTc6TeV04zaHvrqh46bAsyiRYto+fLlFAgE6NChQ7R06dJBbbNzYH9\/P23fvp12795NVuqZDlIuiJOAAMzwWBB2AcbtvT08pJl7dzFiAWbevHm0adMmKikpobq6Olq1ahUdOXIkboa01+CN\/fv305o1a2LXZANguPO2vEXU5rlWaT2s5FHJvaV3ZkTQuoRKZlDIV5V2fxcjOdjVwHzxyUmWAOa8sT30lauPJQUYJLravHkz7dmzR0GJka18xYoVNHfuXAU2gJaFCxcqiAH0JKuXy3Pv9tjc2NcYkwCM2zOTnfbsAoybezs7dz4yeh2xAIMHRENDAz344IMqQ+K+ffsGJRfiawAt\/C33xz\/+cey6bAKMXhszFEFGm5wOjrolkX2OD2a0s23tAszqxydTc4e5Bmb62G5a89HkAIMH77Jly+jee+9VIA1YmTBhQhwwb9myhY4dO6bWH4Bnw4YNtGPHDrrpppvo2WefVeCD9cx\/25HFUK\/jxr4WgBnqq+DM+O0CjJt7e\/hIM\/fuZEQCDH9L27t3r3oY4MFQU1NjqLLnKeNU0FrQyTbA8NjwAIZZCT4yABnkWEk16ieTSxNOw\/hBwj34umTCUTfZ\/dkFmK\/8cDK1WACYj17UQh+9uCWpBsYIYFjbwmPXAwxrbP7whz9ImnIicmtfC8Bk8tMgvX3ZBRire3va+G5a9bHkX07Se4cju\/URCzDr16+nnTt3qm+teDBMmTLF0IzEywMamCVLltDGjRtjSYlyBWASgYzVTLeZ2ALs4wIH4VwBF63c7Bzm+NVHJ1FLu7kG5t0z2mnJlYPzwGiTXT322GO0YMGClDUwzz33nNIO8lrWag0zMa+51AcAxo19LQCTS7PqbCx2Acbq3p42voe+8AkBGGezZL+2AIwFgNF\/MLK4GWCQ2r42vN7+LLhcE5qYzrz5ykcGhUObU0ki58aQ+GwmAAs0LtC2QFY4Sdrt4wCcjNeuBubuh60BzNQJPXTXP6fHB+bxxx9XYH3fffcpsAaMo2h9tZzIZijVTRVgEu1rAZihNOvJx2oXYNzc28NHmrl3JyMWYODAa8WEZKR50QMM\/s905IyVpcQgE8yrVlFLbGKCZgYloLLjHrTSlKVrtMDCfwNafJEmBS34ycXCDtGpZuJd\/28TLWlgpp7VQ3deay8KiZ11165dq3xjjKKQ4C+zePFiJdpEDum5KHe3x5SKCSnZvtYCzBOd9fREV4PbQ5X2MiSB64pr6LqSWtMIQP1nutt7O0O3O+K6GZEAg1m24uynf3joV4dWAwM\/Djysc7kAYnppFvXmzVZAw4XzuiDVPwqS0EV\/G59VxPlhoFlBYVjh9ljTwtqWXJYJxtaZt0D5EKUKMBt2TKTWU+Z5YKae3UMrF0semEysAzf2tRZg1p18k17p78zE0KWPNEjg\/YUVtLLsrJQBRvZ2GiYjDU2OWIDRhltqc26wCp6jk8aNGxcn9l27duVMFJLT9QCNTFQzM4agpeH\/rbTLsAbtCgML\/7ZSP1eu0ZrboJUDxJgVBtcN3zvbGsBM7KGVn5JMvGZydeN9N\/a1FmBuaz5IjaF+N4YmbWRBAnZNSLK3szBZNrocsQBjQ1aDquSaE68b96RtAw93o5LrmiYrcgC4teVdG6eJ+vjHP04nTpwwrc7zfs8DZ1Frm7kGZsrEXlq5RADGVLA5dIHkgcmhyXAwFLsAI3vbgdAzWFUAxoGwhzvAOBBNzlaFuQg\/ABif7wSVj\/539bv+xPdSVjPfc\/94awAzqZdWLpXTqHN2URgMTABmKM1W4rHaBhjZ20NiAQjAOJimXI1CcnBLw7YqtEl8BAOApWrM16mg4E\/qfnt732kPYL49zhrATO6llTc3WgakYTsJQ+jGBGCG0GQlGaptgJG9PSQWgACMg2niDzk0kWuh1A5ua1hVBbi0eRYprYseXPhG7QLMvffVUutJr6m8ppzTRytubRaAMZVU7lwgAJM7c+FkJHYBRva2E6lnrq4AjANZ84dcefnD1NZ2i8oFk0v5TRzc2pCvqnXOBbiUlPxcmYuMim2A+Ua1RYDppxWfS56Jd8gLfJjdgADM8JhQ2wAje3tILAABGAfTxB9yE876JLWdvJl6O99FE0LLHLQoVZ1KIBVwcayB+XoVtbZa0MCc208rPn9SNDBOJzeD9QVgMijsNHZlG2Bkb6dxVtxrWgDGgSy1AINv+UeP\/FZMSQ7k6bQqnwlFvlBSjYu+H9samI2jrQHMlAFacfspARinE5zB+gIwGRR2GruyDTCyt9M4K+41LQDjQJZ6gAkGx1L9iW1EQS\/VhjbkfGI7B7eeU1W1fi5wzIWDLoDSarELMPdsKKfWVo9pN1OmDtDKlR0CMKaSyp0LBGByZy6cjMQuwMjediL1zNUVgHEgaz3AoClATHPTVynYO55Kws9ReWS3gx6kajIJ6M1F8HGBr0uqxTbArCum1hYLADMtRCvv6haASXVisni9AEwWhe9i17YBxuW9Lcd9uDipmqYEYBzI1QhgGGI6O66izs6rlTYGxwyIc68DQeuq2vFzSda7bYD5SiG1tuSZ3tgUAMyqPgEYU0nlzgUCMLkzF05GYhtgXNzbyA69evVqOXDVyUQmqCsA40CoiQCGm2STEn4je215eHfOHmjoQAwZrYpwaIRFp+rnkg6A2bAmYAlgpk4P08ovDQjAZHSlOOtMAMaZ\/HKltl2ASefehjZmwoQJI\/LEeLfXhQCMA4maAQw3jW\/4bSdvUQnTADIwLZVE9omPTAqy1\/q5cEh0Kn4uaQGYL3mpNXruZdIy9bwIrVwTFoAxE1QOvS8Ak0OT4WAotgEmTXsb8DJ\/\/nxatWqVOl1eijMJCMA4kJ9VgNFqZGBaQs4YFIEZc+HrE9HVjl2RkoOueQ\/2M\/Gu\/0LQGsDMyKM7vuIVgLEyGTlyjQBMjkyEw2HYBRire\/vqhR7Cj\/4cNZyKPn36dOrs7KR169bRgQMHCAcF19TU0NKlSx3elVRnCQjAOFgLqQKMtiuYlYxgpoBeFX8ZOENTNXXmzac2z7UKWJIlonMwhaqqXR+Y9Xf2UktTxLT7qTM8dOe6fFOAWbRoES1fvpwCgQBpT0jXd4DrFi5cSGvXrpVvcabSt3eBAIw9ueVaLdsAY3FvX3KZlz792YDp3gbQNDQ0iNnI5QUiAONAoE4AxgrM4JqRFsWUSXDhObALMHev7KCWprDpCpo600d33V2c9ENu8uTJtHnzZtqzZw\/t3r2b8IH34osv0rZt2+La52iGuro6UUObSt7+BQIw9mWXSzXtAoybe1v7xYRls3\/\/foEZFxaKAIyJEKH2u+yyy9RVu3btinuguAUwRjCjNDSIYhohpqZsgItjgLm91SLA+OmuDaOSAgwiFZYtW0b33nuv0qoYOfoBcm688UY6ePCgaGAcfvgl29doWgDGoYBzpLptgHFxb+eIKIblMARgkkwryHnJkiW0ceNGuvjiiwc5X6UDYIxgprf3QmXmQEE4dkHkFRoupib2cen1n6fuL52mokRTbVcDs+7zDdTSFDL9YJg2K0B33VOVMsDMnTvX0F4uJiRTkSe9wGxfC8A4k28u1bYLMG7u7VySx3AbiwBMkhnFt7QpU6YoVX11dTWtX7+edu7cqVT82g85nIXkVkRMsgWGB21vzztjTsAMNCURRDU9N6TWJsKh8YP0\/8ieW1DwUsLDFtN9Y3YBZu3n\/kEtjUHT4X3k2tH00WtHJ3X0e+yxx2jBggVJNTDckQCMqciTXmC2rwVgnMk3l2rbBRire3varAL64tfGmfrA5JJMhtNYBGBMAIa9xqHi37RpE+3duzdmRkq3BibZQmMnYJiZ8DcKoprcTprHph03wr7RVuy8Ivj3lD9MBYWAlz9ldU\/ZBZiv3PYWtTQOmI79Pe8fRUtX1rriA4POBGBMRW4KMMn29UgBmGpvgN5fMJqe7T1JjaF+Z0LN0dp2Acbq3p42u4hWbTpLACZL8y8A4wLA1I69nXy++ixNIY4vqKXOjqi\/DICmPPyka2MJ5iEaaIErbXJbMBPlAriwkCC\/+hPfs\/whxOC6de1b1GwBYKqq\/bRq8zmm7RtFIRnBigCMs+WtDWc1+mKiBZh1J98ctg93AMym0efSSLhHfZhzohWUrr3tbMVK7UQSEIAxAZhkJqSxY8eqGH8seilDWwIvvfSSCmG2UuzMeyrtWxmDXGNfAlZMSHbm2P6IpGY6JZDK3rMz76m0n877HIltC8AkmXUrzn5Y8PiRMrQlcOLECcKP1ZLqvKfavtVxyHWpS8DKvkarqc5x6iORGpmQQKp7L9V5T7X9TNzzSOlDAMZkpjncsr+\/n7Zv3x5z4B0pC0TuUyQwHCUg+3o4zqrc00iTgADMSJtxuV+RgEhAJCASEAkMAwkIwAyDSZRbEAmIBEQCIgGRwEiTgADMSJtxuV+RgEhAJCASEAkMAwkIwDiYRLN05A6azkpVPmcHnSc6q0N\/rkeyQwezchM2O0U4rT5Roc2mpNowkIDsbUp6oOhQmmLZ20NptlIbqwBMavKKXW01ksFm8xmvpt3k6JyPUMAx8NoCyJk\/f\/6wOkiQoQz3KY7aGV96Odeh7O1Vw+aUc9nbObe9XB2QAIxNcVrJJWGz6axUA5hcc801Kq9NY2Mjbd26lfbt2zfoNGRtErCsDNTlTvkQRWicrr\/+enrooYck0sxlGQ+15mRvLx1qU2Y4Xtnbw2Iak96EAIzNObaSzdNm01mpptWsYAAAmMOHD8cd+Y7TkPH6uHHj1BiHU2g5vqndeuutAjBZWX251ansbdnbubUiZTSJJCAAY3NtjMQPOb2otFobvanJplizVk0AJmuiz7mOZW8Tyd7OuWUpAzKQgACMzWUxUtXMWnENp4f+cLoXm0taqp2WgOzt6IGhw0UjOZzuRTZpvAQEYGyuiJHo6AcT0ubNm2nPnj3KT0T7QX\/kyBGbksyNavIhlxvzkAujkL0tezsX1qGMwVwCAjDmMkp4xXBLR64No961a1fMgRf3ibJmzRr1zQyHHgYCAfGBcbB2pGpuS0D29vA5OkW+nOT2XnMyOgEYJ9KTuiIBkYBIQCQgEhAJZEUCAjBZEbt0KhIQCYgERAIiAZGAEwkIwDiRntQVCYgERAIiAZGASCArEhCAyYrYpVORgEhAJCASEAmIBJxIQADGifSkrkhAJCASEAmIBEQCWZGAAExWxC6digREAiIBkYBIQCTgRAICME6kJ3VFAiIBkYBIQCQgEsiKBARgsiJ26VQkIBIQCYgERAIiAScSEIBxIj2pKxIQCYgERAIiAZFAViQgAJMVsUunIgGRgEhAJCASEAk4kYAAjBPpSV2RgEhAJCASEAmIBLIiAQGYrIhdOhUJiAREAiIBkYBIwIkEBGCcSE\/qigREAiIBkYBIQCSQFQkIwGRF7NKpSEAkIBIQCYgERAJOJCAA40R6UlckIBIQCYgERAIigaxIQAAmK2KXTkUCIgGRgEhAJCAScCIBARgn0pO6IgGRgEhAJCASEAlkRQICMFkRu3QqEhAJiAREAiIBkYATCQjAOJGe1BUJiAREAiIBkYBIICsSEIDJitilU5GASEAkIBIQCYgEnEhAAMaJ9IZx3cmTJ9PWrVvVHa5atYqqq6tp06ZNdPz4cVq6dOkwvnO5NZHA8JbAokWLaPny5fT888\/TmjVraN68ebK3h\/eUD9u7E4AZtlPr7MYEYJzJT2qLBHJVAry3Ozo61JeRFStW0OLFi2nXrl20bdu2XB22jEskMEgCAjCyKAwlIAAjC0MkMHwlsGXLFrrwwgtp3bp1tGzZMho\/frz6+8CBA8P3puXOhp0EBGCG3ZS6c0MCMO7IUVoRCeSiBNiM9Oyzz9I\/\/dM\/iWk4FydJxmQqAQEYUxGNzAsEYEbmvMtdjwwJ8P4uKyujQCBAP\/7xj8V8NDKmfljdpQDMsJpOd2\/m0UcfjamWL774YmUnP3TokDjxuitmaU0kkBUJwIx02WWXUWdnp5iPsjID0qlTCQjAOJXgMK7PamZ8Q6urqyN8W5MopGE84XJrI0oCvL+PHDkiX0pG1MwPn5sVgLEwlwgzXL9+Pe3cuZN2795toYZcIhIQCeS6BGRf5\/oMyfhEAsklIABjskL4Wwou2759uwCM7CiRwDCQgOzrYTCJcgsjXgICMEmWAL6hIcRw\/\/79dP3119NDDz0kADPit0xUAGPHjrUsiRMnTli+Vi5MvwRkX6dfxkO5B9nbQ2f2BGAszBW+rd16662GAJPKYrfQlVySJQmkAhmYc+TMQB4NK+Wll15SmU5T6cNKu3KNMwkk29epQqqzkUjtdEoglX0nezudM+F+2wIwFmSa6IMu1cVuoSu5JEsSSAUyAC4wJ1ZVbSafrz7piHt730FtbTfTxz\/+cQGYLM1tom7NvpikAqk5dmsyHI0EZG8P3+UgAGNhbhN90PGDrOWUjypHBS20lPol\/lCzquQLRn+j+EMtuv+bia9LvYfkNQa8VYSfov7X3G5atYe2rRaje+T6PfnnqWZ68qfH2sX1qbRvFTJ43sePu94SwDQ0flcAxuokZ\/C6ZADDc6wfzrHQMTo48DdqD7dncKTp6arMU0aleWV0PHTMtQ64zZn+mdH9GCmkv\/Z30TM9ba71gYa2VExS7TWEBmLt13gDdEPJGKrx+gf1JXvbVfHnTGMCMBamwgxg0ISbENMcfIuKPKOpJfgWFXpGqxHif+3vZMPWPugZfAA9KPEgFIWiM5AUvSZdMGRB1HGXMHwEfZUxEAGoDHgrox+Op6GFK3WHT6o\/+XdP+CRV+s6Jyc6s\/1Q\/5MbV3kA+r4kGpu8Camz+jgCMmfCz8L4VgCkd+A11+N8XN7pIqJE68groQP\/z9LeBv2Vh5LnVJaBlhm8mTfBNoLK8MgUtDaF+BRcAl7\/2d6dlwFcWlqt2AUhXFJbTp0rGxPXT2uajivLoF0vZ22mZgqw3KgBjYQrMAOb1V\/to5\/Y2evf8IvrIolILLcZfgo1eHxqgWq\/f8NsDHsj4wQO5O9wafUhHog9rI8jB60V5DDwV6jo7IKSHGT0M4X0tEOlvXA9Cem1I0HdG+8JQgtcSaU20ckBfzaE3Y8ACOQDyACxV3nPprMBc9V4y2T7\/SildMrsjNuxUP+TGVt5IPm9D0vnu6z+fGtu+ZfkDNOXFIxVsS8AKwGgb94Wb1L8DkYj6neetVpoYQAxgZiSWeYFL6JL8S+I0IekCFr18oWkBuABkjLQuB\/5cQlMn9SqIkb09PFenAIyDeWU18+\/3dSuAQakc4x0EMvoHJa770T8CdP6oEM0ZFYqNgB+2Si3a162g5oJAkXq\/xheFGyPIwYM9THnUG26NQQ4A5wz0RGHHqLBmB+8NgpzTEMT1ijzxMHTm9dHkoQh5NB0ETl\/LL\/WfBi\/+P0xEveGTFKQ89RLgDAWAxnCm1aTw39p70AILxl7lOycGLJAf5Hh+fhF9oHAUNfRGR1dTEKY3\/lFIr79dQB++9CS1NIXo\/+3uoCXLy+mpp55SzrZmhee9dvRS8nlMAGbgfGpq32L5A9Ssb3k\/MxLQm5B8vhMUDI6l6t4d1Br4pIKYUPvjCmK8ZderQY00mJngnUCfKPokPdbZRD\/qjMJdugs+A88PFNOcQJECl\/p+otrA4F5bmvAJg8\/j6L5PFWBkb6d7Jt1pXwDGgRyNAIab04IMzEs\/\/2304T\/17J7Yt348VJ9p9FHj6YdrdUHYEGpQ75fdp1T9v\/R3K5Usf+MA4PDfDDkMPdpbYwCApkKrxcHreC3XC4MWa1gYWDBugArkAhmxbD5dWhUDl5dPeamhL49uOLufnvrtaGo95adPX92owOX\/\/d8OmjYrQF+4pyp1gCm72RxggnOoqfOblj9Ac30eRsr4tACjNC+BoPJ3yuvKVxDTWLCMerwzFcSEOh4nb+n1lOerJk\/R5SMGZgAvraHRtKb172lfFviMg38Lm40ALn\/uyqP6\/jxaWhOFFS6Al\/s3ttOnlxXTtJlRf5jly5cTnHnNSuzLiextM1HlxPsCMA6mIRnAaEEG3+6nzcpX3\/z\/4+lq9VZF2UAMZuAArIWZZxr9VJMfpuqCCM057RxspK3BQ7shGH14G6ltsen1WhtoJFASQY7eVNUcisJN1HyVWJPjQIyDqgJWACj4DXOQHlagmWIt1S97omCHgntlcAG0\/PWUl37d4KdvzOkhX5+HoAk78EoZbfzs30mrNbMNMMW3kM\/TmPTW+0JzqKl7swCMmwskA20lcuJF1wCYsoHfKE1Mi+8yNZrgyfsp0veK0sgAYoxg5mBweDj\/svgBMPt68tOmfdGbiAAt\/33SQw39RDUBGgQuGBfDC37\/6xPRL40oKWtgZG9nYJc570IAxoEMrQAMN4+H5Ef+uVSBDLQArJHB+wCYebPbadpZvQpqUBho8ABu6DtjnAHYwOxkqK0Jhqg+3KfMT4mgRnu7Mc2N1x9nqhrv9dAYb4CqvfmDpKN1lNWafXAhm37U30lgR2u2gq8OTFNsvoIZiAsgBUXdy2mTmh7UcA+AsQs8o+nKsgIlt13\/CBBD4F3Temkc5dG\/PDFetXXHdceJ+vvoq58\/Y\/qxDTD5t5IvzwRgwrOpqf\/rlj9AHSxHqeqiBPQAM757Ix0vWk\/Qxozv2Uh+9ofxjBmkjeFhJIMZRP4gomkolztK70yL+YjBBU65rGn5RatHaVxqAxFaMyFM4\/K89GpTPs0a00fVxVFHXS28wHT0tW1RJ1+UlDUwsreHxNIUgHEwTakADHcDR19oZFD0IKOFGUANO5gyzLx8ykfQLOiLVluTyK+GfUK0Ggsrt66FHK3\/DZurfBRKCDtm7TOgQKOC8aFNBhW8x+8btYNxwbflA0WjlOYFMvruGwUx+Sw+u0+ZjKD1uv+JcaqJO6+ro4rCTvrOhmbl+8LFLsCM9d1mDjCR2dQY3CQAY7YYcux9PcBA61IYikYcMbxohwxtTGv+Jync\/WsKnvwXw7thoPEUX640NSjsNzMUgeam4ptpb3efaxoYrcYlEvIrbcsvTkbNRACXD46OKK1LY5ePdv9tFC2aeUrBC5x1p4xvp6d+3EOXvC9ArU1h+v1v+uiu9WW2AUb2do5tyATDEYBxME92AEZBisbRl\/1jYN4wKqydgcMpCsMM\/t71j8EaEm5DCzU1+RG6oiaqzVBtnNZs6P1qHIgirqpRRID2gmRgkmwMrG25smiU0rpAFgA6aFsY7HDfl9cMxPxdWNMFGITfy3fuaabXX+2P68YuwIzzfJZ8lFwD0wuAiXxNAMatxZWhdgY58YabaFLXiqS9wycGWhqEWbNJKVGFZNoZ1BkKUU1uAgz2NnK76MEFsgC8fPecEHkGfLTv78X03NFi2nF1HSFM+o2jBXHwwj4vz\/+mjy5535nPx1Q1MLK3M7TRHHYjAONAgPwhhzDq79wTzaGSSgHIIOwaWhmAzH\/8vJreeLswYRPJTE3JYMYIavDaFdVBFZWjBZt0QU0qctFey9DC0UQKwDRmorhr88MxfxeAC0Mh5Kb3e9HWswswEyLLzAGGZlF93kYBGLsLIEv1jHxgYEZiLUyiYQ1oTErQxEAjY6XEgCZ\/Nnny56gqrJ3JVd8Z+MAc7C+h75yqs3KLhtfozUV3veVVGhcuS2rC9KHRYQUvG35TrTQu976vUWldWtq8dPX8U0rzgjLvMi\/t3XWCbr5zojIncQQSOh1WkAAAIABJREFU3ksVYJzu7UcffZSmT59O\/f39hocAr1ixghYvXqzGXVdXR6tWraIjR47YluNIrSgA42DmtR9ydiEG3QNk2NHXyKxkNESnMKOFGvwNrQVKMhMU3rfiW2NXpNrIKgALwwuApbEvTznlGoGaVusCEIS\/C35zYdOR1u\/FDYA5K\/h58lHy8NHevFl0wnuPAIzdRZGletq9DY0KSln4INX07rA0IismpUQNDRXfGacAg\/39hVHjqJqKlbloZ4M2EQMpcFlzVliZi\/Aza0yvgpef7xultC+f+liLghfAyo3Liulba9+g6bNL6NIra5SJmLUxkHOqTrxO9jbgZO7cubR06VJCrqGFCxfS2rVrY4CCw0RXr15N9913Hx04cIC2bNmilsKaNWssrS256IwEBGAcrAb+kAN0wMSDB6TWtyLVpuHkC42M0UM4WVsMM0Z+M1Y0M0Zta52FYYKCpkabswZ1tHlrEA2lfU3bJq7TmpXgS8OFQQX\/c2QU52yBWYhNRInuH+PURhlpnaNRJ5npiNu0q4GZ2Hs7+SLJAabHM5Pq8jdY\/gBNdc3I9emRgF4Dg3Bp5HuZ0nGd5Q5TMSkla1TvOwPNTHuknY4Fj2XV1HRlwQfoeHCcLQ2M1mSk17qwv8vVJR5lMgK8zJ\/YRbdf1KLgBdqXe+88ruAFpiI46\/721630yP1\/p2uur6VrFg8+KT5VgHGytwEkx44do23bttHkyZNpw4YNtGPHDgUrRgXAM2HCBAEYyztLAMaGqAZX4Q+59d+fqEwUSGaH8FwnResfAxMIzEqplHTAjLZ\/fXg3w031achJZaxaUEG9aL6WqF+LWTHTuqC+menIMcB0rSC\/GcDAL6JwvQCM2YTm2Pu8twELSJU\/UP8Z8tf+IBZCbXW4WpNSMgdfq+0lMzVl2m8GABOMTEw5D0wyeIEcYDZKBi93LG2g5roe+o8dXfTpzxVRxRiiL9\/yqhLhlzZPpZOt\/jj\/F7yeMsBY2NtKyxb45KC29QCzefNm2rNnD+3evXvQNANe5s+fLyYkqxtAd51oYGwKDtW0AIPw3N\/\/4qRKjOZGAch8\/V9rLPnGJOov3TCTqF\/AhbYgn01j7xm7tjYsPFVZ6cEFkKfXujC8GIVMG\/VnVwMzqeMOw4gUbR89vhl0rPjuhB+gZrZyqKBhvw8EAnTo0CGllpaSfgnw3sYxATiYcKB5LXmLLlc5XlLRwvBI2\/3vU+HWMEeFu36tkt85LclMTZmAGTsAY6Z5AbxcGPDS9j9W0KtNBTSmKKgcdqF1eeynlbRyaQNVFHerRHVTZ\/rpw58I0L\/ff5QOvdxJldUB2vLwLKWZ+fAn430JU\/WBsbK32wOXUUPh50wBJpEGBqBTU1Mje9rBRhCAcSC8dAKMegif9o2pnFCsHtKJIpWs3EIymNHnmrHSXqavsQouDC+fvqrRMGTaaNxsusMxAjhOwKzwvE9qu5P84TOnhBvVUwBT9lVDgDGzlUP9rP32Bth58cUXlWpaSnolwHP8k+4fq3T5cMiNhBrIX7WZrDjzGo0O2pgO3\/tUuLWVSKVU7tAIZp7ve57S6QCcKsBofV70ZiPcK2tetPACnxffANGG+8fTvHd00lWXNtEPd3SqUOk715fRa39tU6YjlOlzSpQGxhWAcbC3zfY1xoq93NDQIGajVBa5wbUCMA4EmA4TUrIHrB2TklF7yWAmUa4ZB2KyXZX9cOB7gzDw5g4fHfirscaFO8G9pQIvqAdNF2AxVTXzpOZVpid39wTOo2Ojv2zYthVb+YMPPkjPPvusUj9r\/7YtVKloSQK8tx\/p+nf6ROEnqbjzKaU18VV9nQL+WtOQ6mSdxJmV+l6mYPNXLY3J6kVGPjO\/6v2l64nzUj1KAMcALC4cR1ve9qqkdNrC8AJ\/F\/i9QPMCn5ex\/hD9y6M16lL4vcDn5Yc7upSJCNqX+77yOrU0RtMiwP\/l0iurqaWZaNqMeDN0yhoYh3vbSLPKYPPzn\/88plVlGezfv19gxuoC11wnAGNDaFyFP+Tuf3wc3Xl9nWGOEQfNx1VlM4c2MZtbbU89q0dlANbmmuGon0wDjR5acI9muXK08MJmI32yumSy+sI9lSpDcsoA07jaAsBMp2OVaywBjJGtHFqYrVu30rhx42jXrl2ifXFr0Zu0oweYkt4\/KC1MXv5sR1oYbbfs5IvX+Ewlt28P4\/WNvlMlzkPmX4AM\/HrcKKlEIZ0fKFJ5Xra87VERR9qijzbCe0hSd8W4LmU2Qq4XNh3dvaJNhUdrHXe5LfZ\/mTorQJVV8YCUsnbV4d52Q77ShrkERizAIJQNi7qkpCRpHD6TNESpp2T+kINmZGpNW1x6enPRp34FQwwe6HAcTkcxCs9GP9oEem5CjRZYfH1emn92r7ot3CPkCmBLlhvHKbygvm0NzIk15A8lz\/\/TUnYNtZZdYwlg9LZyrNH169fTzp07lQZG1M7mK96NfY1etAAzL3AJnRcOxTQl0MIU+7zKlORG4ZBrt81K2rFpQQamJTd8ZKyehcSmo3B\/CcF0pC2cpO5gXTFt\/2Oleov9XhBx9PS+cpo6qVcBzHc3ttMbfwsaal\/Y\/wXaGYRU60vKGhgLe7snfzodG\/Mly1983Fgr0ka8BEYswPDDAGp5fMPdt2\/foG+3UPldc801tG7dOpo4cSLdeuut9NBDD8W8ybWhlnyycboXGEwdX7i3iiiQb5r4zo2xMNCgLe1ZTQw10NQAbnDaMxc+XVvbP85uQuGoJfytDcsGsABUGFi0eVzM7uPqS1uV9ggh7KloXrhduwBzdt2XyRdMDjAdxe+hpsqbbPnASL4Is5kf\/L4b+1oPMDN8M+mS\/Euo\/\/g1qkM48vpG32HbF8borrRmpXRpY9AvTs1GODi0MfDvcVKsZuJNZjpChl2ca\/T5p6PHfbDpKNCVRw88WkMV5UGV7yXS3UH3b4wGSNx5dwk11XfGfF\/wGpuPADDaIwT4\/lLVrlrZ2wCYEzWrBGCcLCKHdUckwPC3tL179ypoSeQNjgiQJUuW0MaNGxXA8N8cz+80E6\/dudMmvoP5yoqGwm5f+noAGhSYnSpGDahQ5cqy6Gv8v76OFkZaT\/mppd2nNCzq79PgYmd82mMWnAAkm5BS\/ZZWe3w1+YLJnXj7CqZTU42xCQn3nMxWjogjydhpfWW4ta\/1ADPBO4HgsIpQak5qh5DqVBLbWb2LTGlj4IyMCCuYlOwWHOaILLy\/6mlL2AS0L4+OmUr\/fTJP+b5oC5uOkGEXEUcoyPeyeOqpmOkIjrsAGNa+sPkISesQecQF5qM8b77S0OgjkHBNqgDjxt62K1epZ10CIxZgtKp5AMyUKVMMY\/E5jLW5uXnQ+3bPQrI+Pcmv5AcvcsU4iVByazyZbAcJ6qB5wcnSv3+u21H4Oh+w+YMf\/IAefvhh09vgeR9z\/AvkNQGY\/oIZ1FrzFcsfoKadywUJJaA3udnd13qAwf\/QNmgBBlqYglGLHTnzJrqRTGhj2JfHriYGuXEgkzWtR0l\/Qrz2vlj7YpSsDtoXvekIUUdH3ihQAIMC05FW+wI4ueQyH6255ZVYN1rzEQ5zrBpXqDQ32pIqwMjeHhofNAIwu3crDYwRwGhfv+iiixKakJwcI+B0mXAIsFsRSk7Hk+76HGUEp2MkDYTmxUn2Y4zXbh6Y0cdXkieYPBPvQMFMaq9JnAcm3fIaSe1bBRizfa0HGDi9QtugP9soMH5vyontUpkPrTYG8OR2YYiBFgbamFQKtFLwgUkGMJzz5U\/tAUPty00VHnW+UVN39NgPdtxF1BGOCtD7vuAalbiuMqiODeDC5qO7V5yiO9eXUl5RqarrBGBkb6eyGrJ37YgFGDjwmpmQtE6THA1y+PDhWLhbNnxgjJaK1rnX7EDI7C01Zz1rzUUAlp3bTw46VdpuDwyByAGDdWFWeN5L6z5vCjDB\/FnUVSNnIZnJ1I33rZqQzPa1FmDY4RXaBg6l5rHCmXeUp9Xy+Uh27hHaGGRyHohETE+4ttM+fHmgTfqXjvtTqo7kfjCrXVWfGHygfcFZR3e9GR82Dcfdx88LqVOl9Y67nLAOg9FrX\/Davz5RoQ5s3Pt4vRovtC9f+sZUOnwwovK\/IDoJbcD05ARgZG+ntByydvGIBBhI24qzn\/abWnV1tXq4MfRoP+SggcExAk41AU5WgZ0DIZ30l6m6enBxai4yGjebkFIFmMITn6O8YPSgv0QllD+L+qq\/JiakDC0YN\/a1dm\/D0RVmFmgbxvUdUloYLmxGGt+z0TQjs5PbZ5NSN1WlBWKgSUo1MgmRWZN9c2lp0xlNiP4et1RMJKPII\/i+QPvCjruo9\/\/bOxcwqaor369+02+apruh5WXk\/VAjUTDORfARI3JNcJQrGNPoxImIiHqJbVB5jSGDYbgmDANzzU0kQcxF\/PjC9TVRx5a5iTCOJD5AAe8gCg39pt90dVf1\/dZuVnO66tQ5++x9qupU1Trf59fYffY++\/z33tW\/Xns9yPcFE9bhhUdAmPeFfF8ErJwPnzb6v3zz+iHwnUUXwW+29ZVwQQdejF7CKtU6AMN7W2fFRq9t0gKMMdzSmKI9uDKoTBg1HmUgwHjhMhaE1M3eG6v3QWhBJ2H0c8GjIgTDSIALvZ\/qEVLq6fsAzlcqDqdVb9ZU6C35CQNMlBaTG\/vaCDCYyA6PkNDaYAylpteJ9DGSUbaaQUugNePakKMsXWlVrDB2SezIeVfV+iKy7v5VPTz1YNOA10MLDAEM+b5Qcjv0j7n6hnxoOH\/8pAMwvLd1V1V02ictwLghb6ydeMO9A1pjsKo1WhYon4pZvSA3NHCrD4SWIQXdMHNaqwAXvNCy9V5Vn69LJC9VgPGjX4INwKCfQerQ9QwwkZzACPRtzAODAIMWB2MoNT0yGsdIZhCDtZl6uy44supIgJakjsJ74OXO3dJJ7uxywNyVVwI3ZJbAws\/6\/FvoIusLlQvA7wdHHuH3Hqo4Db2d7f2h09QeAeZXz54QEUj3Pjwahg7LFvc0YGmB1YXQ1FUo\/F9Od6fBlJKu\/uc6deLlva2zoqLXlgFGQ2uvAgy9khnIHPikQECNFy6ytKCVhaCFrC0ILdE6klMFmHM1F8Jqw+mZmjkVshhgvLDcHI0hGGDI54NywVBnlBNGpcCjowEZbiZLjJsQg5YkWWdemQgkPD6qbs8Lcd7FyKOMzkxY\/W5feQC81l5bA5T3Bf\/f7PiI7sUcML2BvtIBQ8sGiaMjDJ2m4yWMXsKw60N1WVoAw3tbdXVGtx0DjIbeXgcYI8igNQatMniRVQb\/HS3LjDF\/DAIL5o7Br2I854+Ijh7ucs0x18m0qgJMW919ELCxwKRlToXcIXyE5GQ+vHBvMMBQ1I0xlJrGGc1jJHrmqZxVgD4xbkUnYV6bTwP1Unlh7CKQ7I6PjHlfKOsuJq3DkgF4UfTRA3c2hiwFBBWMNGqo9cNvt+EfOX0JMkV49fW58MLvS4Tzry7A8N72wi60HwMDjL1GYe+IF4AxvgBaZRBm8Jc21v8hoMGkcke\/6vsAwWy44utXA0vSW0lFgILHQP2wch5QgmEF+8HjoaOHfBE\/HpKZXlWAqW9YAn4bgMnMmAJFRev4CElmIjx0TzDA4NDMQqnx+5FKamclBzr2nsjdDIGOtwc4FqtKiEdhn6WmSQGMnQNvuOMjKtho5byL47959lmYMbUJnnpQ3q8Qj49SsnPh2BdZ8I0r26GuIw2KC7tgWGafIk6PkHhvq66k6LZjgNHQOx4BJhhmikvTYPzkLAE0eBmhhkDE7siJ7jP23VDfC9DbC++90w74DISVhrqemFhY7KZYFWCqG5dCj986D0xWxmQoG8xh1HZz4LWfOwEYcoKN5jES6tWScS3UDloyIMGeqo74DtVZE6TKC9g58FodHzXV5\/SHTuNYg4+P8Hvo\/3L0g2YRFi1z0fERWnFunt0Mvtxe0aw72weX5\/X92ynA8N6WUT729zDAaMxBvANMuFdHKw1eCB7FJelA\/x\/ufvJVQUDBC2Elni5VgPmicTn0BKwBJjtjElxUyIns4mk94Fhpbxv9QsxyweC95Aczun1ZRMOpzTT8InczdLW9Bf7WF7UkdgowVZ1Z8EJb6NpXOT5CvxXM3ULX5jUnBLzIAgwdH635+UgRev1Wda5IiveXthRlgOG9rbWcotaYAUZD6kQFGA1J4rKpKsAcbXoUugPWtZByMybBmAIuJRBvC8MMYMxywdB7xcIPBp9NDr3BzsVO9UaA+SxjuO0Rkp0Dr5Pjoykl5wBLBxj9X6wceM3eiawvCECY\/wUB5h\/fL4YHr2wQ9Ze+XaRmgeG97XQFxeZ+BhgN3RlgNMTzUFNVgPmo+XHoClhXo85PnwAT88NXrDUr5miUhmpxZWZmQnV1tWm9Lg9JmTBDob1tTPAmcsF0nzb1OUEAKMxIj2hWXjNx3TpGkvWBIQdeTGBX4+8OGVK45HWVI\/0wsmdg9BGVDqDkdUYLjDGBndWimnltFtxyZz78YvtwkX0X\/V8wRBvBSAdg3NjbCbMZPPwiDDAak8MAoyGeh5qqAsz7LU\/ZAkxh+jiYlveI6Rk8VpqePn06YNVpBJX58+fDypUr4fjx40IdLF+xevVq2Lp1K2AFdEyyePLkSVFBna\/IKhAWYAJ+6Kl\/IuThVFco2n4w5MyrG1KNAPPv0A4HfPsthbVy4KXjo+drUmF7TWp\/P1Q6wBh9hD80839xYoEREUmrC+DzkwWi+OOye85Adw6IytazxjbDG02psLisL0rJqQ+M7t6O7Ork3kkBBhiNtcAAoyGeh5qqAswfW9fCuUBoqKfx1YrSx8IVuctMP0CNQBIMK9gHQs3cuXMhPz8fysvL2QITxTVjBjDhktnRsGJ1jPR5\/u+0s\/PKlhOwcuC9NDMHNgwZE1L76PLcXvgfl\/hF4UaEC7r+6eZq+I\/3c+H1qsH933MCMOj7Mv7r+fD6vxWL7Lt4fLTrcCHg0RQ68J7pBuUjJN29HcWlmtSPYoDRmH4GGA3xPNRUFWDeaVsPnYGBqc6DX2tc1o0wLutbUgCzfv162LNnD+zatUt0gwBz3333wXPPPSe+F1zmwkMSJtxQzAAmXDI7evlYhlMHV8p2MiEpaaUiFJzqPoVrS\/4vO9rqTB14nfi\/mOV\/oeeiE+9vtrYDlggId5HvC\/q9IABR7hiEJDyaej\/QDQhOqlFIMnt7SNolMDP3fmnrjpM54XvlFGCAkdPJ9C4GGA3xPNRUFWD+pe1n0GEDMKMyroDp2bdLAYzxuIgA5rrrroP7779fqGU8cvKQfAk5FDOAsUpmhyLEIpzajSMkOv6iuk\/hJtQugV04\/xez7LtmDrz0XLSkvPdWa9goJISXux\/Ih5RB2cL3ReyN88dH6MC7dW61sAJh3pnUzDa4NDNXGjJo3mX29tC0i+G\/5N5n2redb1tCbpoYvBQDjIboDDAa4nmoqSrA7Gn\/BbQHrJNtlaWNhhtzKpR9YIxWGaq0XFlZ6SH1EnMoZgBDFgizbLyoAoHARR3rINt\/OCrCdKZNBszKG25MMoNIy18I7Xm3AAKM1SXj\/xJcvBH7e+fSHnG0g\/\/RRQCDDryNZweWNsFEdmNL60PqIGFbhJeZc3Jg5pxBAl6wLR07IbxgAjt04MVx4LHVR752JYDR2dt2vm0yc8L3yCnAACOnk+ldDDAa4nmoqSrA\/O\/2rdAWaLZ8k+Fpo2BuzqKwfwGa\/aUW\/AG4dOlS4Cik6C4YM4DBEYTLxkuji\/YxUmPm7dCQPkurpIBsBJKK\/0s4B14s4IihzsvWjA6ZWDoOCo5E6oeXa7Pghf9T2l96AKOPbrqhGZa8US6Oj9CB95H\/TIMXJ\/oBj7u+l1fi2AKjs7ftfNuiu5IT+2kMMBrzSx9ymBZ\/0xrrcFqNx3DTCCugCjC\/aX8OWntbLEd3UdpI+G72AukP0Ai\/KncvqYAqwES7uCNaX9p7zCOjZF6V\/F+M4eJm7VTzv5AD75LXyqGu44KlxQpg8PlYkBHBBJPZHT3cDeMnZwCGTKdkZIp8L5T4Dq0veO9JSBMZfjGyCR14MQoKLTCqACOzt6\/MvBquyvxmyN4OBphg3zaZeeF75BRIWoCZMWMGPP3005CXl2cZ3YF\/DS9atEioeeTIERHyShd9yOH\/b99y1hN1feSm3Zt3YcZfLGWAQHEhG3C6qJuExdteeak1IgNXBZhftm+HFhuAGZF2ESzIvo0BJiIzF9qpG\/saew0HMOGy8RpHEq1oJDf9X+wceFX9X8zqH6FWdgCD9+BR0szL2\/ulxWKPGC5tvBByEGDQebe2PV34v2AY94dtKQJgKhu\/EJFRTsOoZfb2lPRJcNOgG2wBJti3LUpbISkek7QAQ\/4E27Ztg40bN0JVVVVIfg2MAqmoqIB169ZBbW0tBJM0fci9+sciuOWaJrj\/juqkWDRuvSRCCpYrwOKSBC\/Yd32tD4583CYe01DTBROm5cOEaXkCEBEU3b5UAeYf238Hzb3WUDU6bTh8L3ue9Aeo2++WbP25sa+tAMYqGy9pHS1nXszC25I6Sev4yE3\/l+D8L6iHWQI7WYAhPdHKEuwngz8j6wvWPlr9bpkIn0b\/l4WfpcFNRb1w89Au2NR8SglgdPY2+8BE71MnKQGG\/krbu3evgBY0+ZWVlQ2wruAU2IWtBgPMEw\/UANUFit4Uxt+TEFbmLcgX4GIElj+93dAPLsFvhQDzo\/XjImLpUgWYTe0vw9lAH2iFu8akDYN7c25igInCMnVrX1sBjMjGGyaZHb0iHcuUntsKBd3vRuTNyfqiEz6NA5NNYIfg9qkvDzY1h\/6RFi7\/C\/ZvFoHkFGDCCYjWl2\/d2Cwy72J+GfJ\/WfhZugCn8tw2Ee6NFhj0Izt48KDtXNBnuu7e5igkW6lduSFpAWbVqlWwffv2\/vwaY8eODUnTjgAzatQokUQMnSjDHSE9+2I5PLywGjatqY+7QoaurCKJThBaEFgQFvCYCK0sf3qrAY580hYWWoK7vefh0ZCaNsh1K4wqwGxo\/z00BS6YuM1k+FpaKfxtTqiZWUIyvsWhAggwbuxrK4DBSJwZ6V+ztXpE0gqD8IJVqDtgqO04rCSkqCm74yNV\/xd89osTe2Df5wMjkPD7VlFIMtNOkUfvfJHbX90a\/V8w\/4vwf\/maH+rSmuCtzrNKAMN7W2YWYn8PA8z5BGFmAIMUjVlQV6xYAaWlpcJnhqw2xg85Ahj2gwld0EZrCx0NWVlarLbErQuHwcTLhrjuMK0KME+3vQaNNgBzSVoJLM2dzRaYKHzWyQKM3b62Ahi7ZHbG18SIpByoBwyrdvOiyKOepmeht+sT5a5lj4\/wnS\/NmANY\/8jsCpf\/xQpg8GeYifcPb15wyHXyIuj3cvG4c\/DA6+WiGQERhXFj6DY68H7sa1cCGN7bTmYjdvcmLcAYYcTqCImOljDVO\/rKfP7550B5OIxOvDiFr+xqjZijaeyWiPMnkz\/L1bOzB1hb9r54xnlnhhYIMNfcWAp4VOfmNe+OfHGk9eqrrwpItbto3p9sfQsaAh2Wt49PL4ZHcq9hgLET1YWfOzlCstrXMgAjk3clEnlhqHijv+VF8Le+qKwaHXMd7j5sW4HaKnwaB4AAc7Apf0D9IxoYggTmZ6k6kRsyVgSY48dCHXPtXoocd439Lv1GA0wqbwc8PqLQbXTgnZaZK8KonR4h8d62mwVv\/DwpAQald+rsh23CWWB++1opzL2mEY7+ucX14w1vLBO5UdAx0dVz+pxy\/\/h2I6haW8yeGCkLDB5tVSwd7BhgKluroCHQaSnOhPQh8KPcGQwwcktI+y439rUVwPQns6tfKWX9oKMkN5LboeWlMet20IUXfD+nx0fhygdQAccNX6WK4onBlxXAIHTMGdNumgsm3EIwOzqisgTkREyh22gxwiy8jxaWOwYY3tvaWzEqHSQtwBjDLY2+LcGOu\/j\/s2bNEpOxb9++fuuL8UNu1T+PhrtvroX6\/2xISoAxgktvr1\/4tOzdeRoaan2uLmJ04k1JzfDMEdKKlv8L9TYAMzG9CB7P+wYDjKsrIXxnbuxrK4DBn9klswseHTrKpmZNE0dJKhl60eelNf1a1+AFx4djqk4vEvWPrC678GkCGLMMvNivFcDQsQ+GRlNeF6uxELwcqssSUUd0YUj27Zc1wIav0uAv7SmihABGIPUBTF+BSacWGN7bUdqwmo9JWoDR1E00p6OEZAYY9B+pWFoEkQQX1Lq4NBM2\/K8pETmmU\/WBeaR5P9QHzlkupUnpg2Fl\/uUMMG5suCj2QXv7zXN\/ADxmMV6YCybv3PuiArTshZaYlKxpUBD4FMrObZVtBggvp7JXQXdvr7C8BDrelm4b7kY6PjJ7t+A2VuUD8F4ChDkfDSwHQP1YAQzeg463U0q6bK0wdGyEuV7I74WeQcnrMPsuXujAizWQKhtP9I\/PaR4Y3tvayywqHTDAaMiczABDVhf0HUGLy6+ePeG6xcU4NRRGHYlIL1WAWX72fagLhK+Yi+OflF4ITxVMY4DR2GexaGoFMCKUuvu0I4DBd6AsvemBOhFend\/zLmQE6kJeD6EFaxy1Zlwrvvb6a6GnbqX46saFMNU26Erb2kf4LDv\/l3AVqGUBBu\/bffuXIs\/Lz58vC8n3glaXK69og3mzmkPqKWHbYOdd\/B458GIINQGWU4Dhve3GSot8HwwwGhoHA8yR\/bVJ4cRrtLpgKLSuc67MFEQqhBqfrQowSxs\/tAWYyRn5sKZwkqNaSGZ6YHKs2bNnh4T6y2jH9zhXgPa2WYgxWiVmZs0E36lbHXeM1g8EmdTc6wH\/jTCDV0Zv39fulBLoSS0RsNLbUwOBjn91xepCA5UtHYD324VP4z3oX1LiLxK1h8wuDKPe\/aG5Ey\/djz4smICuNLdHHCU1nE0TIDPj8nbAukh1benwzpe5A4pBUttg64tblHmTAAAgAElEQVTRgfcjX4cywLixtx0vDm7gWAEGGMeSXWhgBJjld56C9\/6lKeEBhiJ20EE3En4uZtMRyeMjHYBZ0vgx1Pqt\/XymZOTDusHjlapRkxaYERrP8Ovr6xlgNPark6a0t7FCc0tgYL0rCqWWiUSyeibBDN6Tkl7af2ug6xNXocU4BoSnjsJ74OXO3SHvFTxWO\/8XvN8qhBp\/jgDzafWFXC1WeqAvy3Wj2qAk1w+9KSAqS7\/zRZ5pBBP2Q+UIjP43Rv8XvEfVAqO7t52sNb5XXQEGGHXtBvjArPvhiYhkidUYnqtN6cho5uwskYAuGlYXeoFvXj8EvnPXCNfDp6l\/VQvM3zZ8agswUzPy4OmiS0wBRqZqLYbvYwmLzz77DCZOnAgrV66E48ePuzq33FmoAlYA4zQSySv6CotPyXr4NFBvGzqNY7bzf8F7ni8ZB6\/XZ5mGUOPPMSNuVnNOf7I5t7Qgq81rbYEBzzb6v+gAjO7edus9uR9rBRhgNFYIfcgleiZeyutyyx05UYcXtL786Kfj4NjhnohFeKkCzL31R6HW3225gjAPxU+LzIvJyVStxbDgDz74AGpqamD+\/PkMMBr71UlTK4DBftCRN6f51xGzlDgZq+y9Tqwv2Cf6v1R1Zol0\/OGu14dNFsUTMfut2YUWkcVlAbh99yjZYUrdR2UD8OjqjC9FtKHjI2PI943Zg8Uxl1MfGN29LfUSfJO2AgwwGhImC8DgsRFaXn797AnptP8asg5oStaX7VuaIlamQRVg7qo9DjU2APP9vGL4fn6xkgXGGBJMogSXs3BLZ+5noAJ2AKPqyBsrnZ1aX2T8X+xywOC7frsoAJUjA7DktXKo6zCPVHKqCTnuBoMT5X\/BBHbo\/4KXKsDI7O3LMrPhH4pHSsOR0\/fk++0VYICx1yjsHfQhh4ns7p5bK444Eq2YIyV5Q3+XaB4boejk+xKpKtQ0saoAs6DmBJzx91iuoJtz8uHHg0u1fGDwAegHwxYYjc3qsKkdwDgpKeDw0RG5ncoGyPi+4ADsygfgPXY5YOhF7EKpnbwwHR0d9PlF3hfjFez\/ogMwMnv78sxs+MVQeeuOk\/fke+UUYICR08n0ruBq1PffEVqpVaP7mDfFo6NH1w6Fzz5qFtaXaF8YeTTx0sKI+b7oAsx3z5yC0zYAc0XWINg6tMxRFBJGHE2fPn1AdXQGmOiuPjuAIQfXbsmMvNEd\/cCnOSkbQC3twqedAAz6wVyRmRaSv8WpJggvD17ZAMWFXaJkQPBFBRyNFbNVLTBu7G2n78f3O1eAAca5Zv0t6ENu\/yf5MK7sbMR\/0WoMVakpWl\/Q7+VnPz4W0RwvZoOjvC\/RKJCpaoGZe\/o0VPv9ltp+IysLfllSwmZmpRUYu0Z2AIMjU0loF4s3ks26axwbZhsOVz6A7pO1wNDRzup3S+FQ3SAlCYzwYvR7oc7Mjo\/wZ6oAw3tbaZqi3ogBRkNy+pA79mU2DMluSyiAQevLT\/6pTNQzirb1JRqOu8Zpp2MyrHWFBR3tLpr3G6rr4VSPNcBclZUJ28uKGGDsRPXYz2UABv1g8KhFJR9MtF6Xah6ZhYOHG4OM\/4sTCwzeq2OFoWOjQEaPyDdDTrvG8WP\/Xy\/whVTMVgUY3tvRWqF6z2GA0dCPPuTQ7yWSTqYaQ1RuSlaJn608FnXHXTw6KhmWK6KOouFT9OiaYlE122mkwnWnmuBUT8BS46sGZcBvywqk+1aeMG7oqgIyANOfD8ajx0jkuHsKfLY1j4ziyYRPOwUYvB9zwjQ0D6xjZDdp6LCLEUd4bBQOXsyij6hfVYDhvW03M974OQOMxjzQh1yknUw1hqjclCKPHv+bQ8p9qDTEitPX3FgaVSDc9lK5GKpjgPmqRQJg0uG3w\/Ok+1bRjNu4r4AMwOBTvXyMRCUDZB13SUUZ\/xcVgKFjHqxnhMdJVlFJaHXBStUIL39pS4ENJ1NNLS84Dox0WlzeBRh9FBwVqJrI7jre2+5vqgj0yACjIWoiAwxaJXoD3YAWmGhdGDJ978OjI1KwMdw70FGZCsDc8GW7BMCkwfbyHAaYaC0il54jCzBuZeV1adj93VDdJZmCjcHPlvF\/oTaYB2bDV6nwRpN5HpjgvtFags62wzJBlAbAytIINHhhKYGSHD\/MGdMmCjye8YHIL2PVN\/ZXOSIAdWlNYHTepeeqAgzvbbdXZGT6Y4DR0DXRAabuTHvU\/F+iFTIdPN06AHPTF51Q3dNruYKuzE6FX100iAFGY5\/FoqkswODY8Bc+Vor2t74Yi6GGPFMl6og6kfV\/ofsxE+\/z1VnSAEPtMOQZLScIMsYLoeUv7SnwYVuKVJ+UZ8aY+8XYnyrA8N72xFK2HUTSAowxSVh1dbVtjRnMiIrX4sWL+0VNZICpWDoYAv5zUQGYWMELTiT5+uC\/nR4h3Xq8B053WwPM9OwU2DYyXbpv2x3LN1gq4Ma+xgc4ARgq7qhbG8mNqSW\/l9aUQVLVpoOfKev\/YgSYP7dkhuRkkX0XtKAMywA40w3iK8KL7GVnfcF+CGCwltjBgwdtu6Z5d3NvUy2zzMxMMEtEieVCNm7cCOXlfUfZO3fuhM2bN9uOlW8ASFqAQSDB9Ozbtm0Ti6eqqirsosG8HIsWLQpZfIkOMBid84P\/+ueI7hMKl46VH5EOwNz2\/\/xw2rqSAFyRkwJbRqUywER0FV3o3I197RRg8H4v+MIgvKQVLYe2jNFSxRrNpkTW\/4XaYpp+\/7kiZYDRWRbk+7Kp+VR\/5t3g\/lQBxq29TbXM9uzZA7t27QIqDWIEFCwpgldlZSUggD\/22GPwzDPPwIEDB3TkSYq2SQkw9Ffa3r17BbTgAiorKxtgXaHZpwVVV1cHgwYNShoLDIUWRzIKCR12b100HGIFLzjHVF1bxQJzx7G+vxytrq\/nAPxijLx1Jyk+dSL0km7taxWAiXViOzfgBd\/bif8L3k9RPnM+cqdMgOzSoMijNzvPmvq+UD+qAOPW3sY1uWTJEli7dq0owop\/DI8YMULAitmFwLN69WrYunUrA4zEYkhagFm1ahVs375dUDECzNixY02PkYiYcdEFQw5ZYI4e6oJNaxok5I6vWzAPTCSy8OKR0TXXDxHw8squVnjlpdaYCaMDMHceSbMFGIy8ePbiAFtgojDD+MvCjX2tAjDYBq0XCDLRzs5rPDZyGnFknBan\/i\/YVjaZnZvTT0dHw7ND876Es8A4PR52a2+bAUxwlm0aMx0lWZ0GuKljIvTFAGMBMMaU7mZWGgIYXAix\/kUcicUYCSsMJalLSUmD997piCm86Fpg7vo0I2xoJ83HZXkB2HRJDwNMJBZoUJ+yAGO3r40As79rPxzw7ZcePULMRZAJ6A8TjcsteMGxInz9VdZ3QpLB2b0HOvLq+MHY9R\/8c6p5ZHV0RG3uyiuB7+XJZ8Kmz3SZvf39Mj9UDPOH7G38o3fChAnQ1tYGO3bsgDlz5thaYILXrlNNkvX+pAUYzLpqd4REC9G4OIxOWEYLTLSSrkV7oVKSN92jJKPVBZPTbVpdH5UkdXZ66Vhg7jqUBTU+a6dDBJh\/GOdjgLGbCBd+LnuEZLevjQDzcsduOOk\/KT06smL0+msjDjFYoDGtYCG0BFqUfV6ML4aZhXt6R0Nlo7O6Z+gHg0dJ0ThGoqgjuzIH9F6qiexk9va3hvjhsdHdlntbxgcGnXwrKipg3bp1fGwkvdP6bkxKgMEXd+Lsh\/dbWWBi6cPhcL6VbieIUalIHQwuXrC6GEXQAZi7Px5kCzCX5gdg4\/guR8UcjeMjB3L8nky0nNIEJ1AjN\/a1EWCcpOAnGY0Q09P0LPR2feKqwuTvkpo1DZxaiKwGgtajqs4seKGtzvF4neaDcfwAAJD1ezH2rRpG7cbepnGYRSEZi7OizwtabOhCy82TTz7JMCOxSJIWYIzhlkaritEj3KhfMgMM6kC\/6OtrfYAg86e3G8MuL4QWjC6aMC1f+LqgxcVr4EKD1wGYig+zoabL2gJzab4fnplkDjDGowyzatPBEQnh1qbEPk+aW9zY17oAg+0RYtCigccybuWIQXDBBHVkdcEkdU6sQ1aLQMX\/xdhfpK0wBC+YaXdxnXxyTVWA0d3bSbPhYvyiSQswbuieyGHUZvpg0rd5C\/JF3SD8N8LMkY\/b+m8dWtqXlQrhBS8vgwsNmvx88P+dOvrdczAHarqsM5BOK\/DDhimdpn0jkJw8eVJEwslEH9hFMLixprmPPgWc5IGx0oxyxOCRUqD9bcfJ7hBaUrKmQWrWVAEveFx0uPuwI78cmTmlKKpwCeFk+kArDKb9x5pFbl5UgsApvOAYVAFGd2+7+f7cV3gFGGA0VkeyAQxJhfCCv\/jxwjwqdFHhxaOHfCI0Oh4uHYC59z9ybQFm0cguuGuUuQ9MMMCsX78eKF9EsHYIL7Nnz7ZNuBgPmsfDGN0CGHxXtG5MSp8sKlfjld97TsAMQk2vvwagp\/aCJOmlkJJWJoAF0OKSNU38DMEFnYkRXiJxOU1gZzYGtyOS0OpyU1EvLC4LgF24dDhNVAFGZm9PK\/TD30\/tkP7DJxLzlux9MsBorIBkBRgNyTzZVLWY473\/ng+156wtMNeX+eCRCXoWGKs8RZ4UNAEG5SbAGOVASwcdLwXLhJCCP8MLj4bw\/0\/5T\/b\/O5KyOk1gF24sdJTkpD6SWV8UKp2a2SaS1Kn45WC\/ygAjsbenFfbATy9rZ4CJ5MK06ZsBRkN8BhgN8TzUVBVg\/mZ\/gS3ATBvcA+svbzP9kLPzgUGJyCk1XOIrD8mYUEOJFMAYRSJYKUjpgxa63PJrcTIhOg68wc8hiHmjKcVxhl6j1QWPjGRCpa3eUxVgdPe2E+35XnUFGGDUtes\/J0\/0KCQNieKiKdZ9wqMkDK1\/9dVXbcdMv9x+8KfBtgAzdXA3rL+i1VEUEoHNa6+9BljDBWuo0LVv376wWTxtB843SCsQDYCRHkyEb9R14DUbHoEDFmfEatJYVTrchdCCfi6X5fXCt4t6AcEFj4xUrS7G56gCjBt7O8LTxt0ncxi1G7PPFhg3VIx9H1QPCeEFIcbuonn\/4b8NgdpOa4fFqUXd8HdXnmUzs52oHvt5MgGMGw68ZtOHPjE3ZA8WieTwokrTxnuxgOPleX0FUd0EF3qGKsDw3vbYhgwzHLbAaMwTA4yGeB5qqgowS6qG2gLMlCE+WDejiQHGQ\/MtM5RkAhg3HHitNEWQuTQzF0rF1z7nf7oQWj72dUCN3xe2IKPMfIW7RxVgeG\/rqB69tgwwGlozwGiI56GmygDzr6VQZ2OBmVLsg7UzGxhgPDTfMkNhgJFRyfv3KAMM723vTy4fIenNEQOMnn5eaa0MMG8Ng7oO6yOkKcVdsPaaegYYr0y25DiSCWDcikCSlDaqtykDDO\/tqM6T6sPYAqOqnCHZFTvxaojogaaqAPPAG+VQ15Fu+QZThp6DNbNqGWA8MM9OhpBMAHNP7r2wt6PLFadZJxpH415VgOG9HY3Z0X8GA4yGhmyB0RDPQ02VAea1i6Cu3QZgSs7Bmtk1DDAemm+ZoSQLwEQiAklG32jdowwwvLejNUVaz2GA0ZCPAUZDPA81VQWYpa+MtAWYyaXnYM2c0wwwHppvmaEkC8BEKgJJRuNo3KMKMLy3ozE7+s9ggNHQkAFGQzwPNVUFmAd\/P0oCYDph9Q0MMB6abqmhJBvA3HwmMiUKpMSO4E2qAMN7O4KT4mLXDDAaYjLAaIjnoaaqALP85dFQ15Zh+SaThnXCUzedYguMh+ZbZijJAjCRDqGW0TqS96gCDO\/tSM6Ke30zwGhoyQCjIZ6HmqoCzCO7xkC9BMCsnHuSAcZD8y0zlGQBmBsHfQt6ekdDZeMJGVni7h5VgOG9HR9TnbQAM2PGDJF1NS8vD6qrq02r\/BrvwekMTuPOABMfi9xulKoAs+J3F0N9q7UFZuLwDnh8HgOM3Ry49XM39jWOJVkAJpFDqHEeVQGG97ZbOzKy\/SQtwFCRvG3btsHGjRuhqqoKNm\/ePEBtYyG9BQsWiLo0u3fv7r+PASayizNavasCTOUL9gAzobwDHruVASZac+nGvk42gKnqzErIEGodgOG9Ha0dq\/ecpAQY+itt7969AkY2bNgAZWVlsHjx4rBqXnzxxSGgwwCjt\/i80loVYH78m4uhwcYCM\/6iDljx3fAAg79wJ0yYAD6fD7Zs2QK7du3yiixxNw639nUyAUwi54DRARg39nbcbaA4HHDSAsyqVatg+\/bt4hcGAszYsWNNj5FoTtECU1FRAevWrYMDBw6IbxPAHD3UBZvWNMTh9POQUQFVgHny12OgocX6CGn8iE545K\/NAYaqTiM44\/qaP38+rFy5Eo4fP84To6AAAowb+zqZAGZ5\/sOwqblaVH9OxEv1CEl3byeill58JwYYCYAJ\/mCkiSSAwf9\/ZVcrvPJSqxfnmMdko8C8O\/Jh3oJ8cFqN+qlfjrYFmHEIMAvMo5AQnE+ePCmsgGjhW716NWzdurUfkHninCngFGDC7WsjwOzv2g8HfPudDSRO7k70JHY4DXfllYhq2LfddhucPn3admboM113b9s+iG9wRYGkBRh04JU5QjKzvAQDDFpgtm85Cw11flcmhTuJrgJXz86BiqWDHQPMqv85GhqbrS0wc7\/ZCHOvaTT9AA0GmPXr18OePXv4GElx+p0cIVntayPAvNyxG076TyqOyNvNkgFgbsweDI8WljsGGJm9PW5kJyy\/0z5FAvlPZmZmwpEjR8K6Kpi5KXh7BcV+dEkJMCi7jLOfnVmffWBiv4DdGIHqEdLqrQgw1qUEZkxrhe\/dYl4LiS0wbszewD7c2NdGgPl1+6+gJdDi\/kA90CNl4V1cdwxq\/N0eGJH7Q1A9QpLZ2+NGdcJDi6ot4QihxPiHCa7PDz74ICRghH4noT\/czp07TX\/uvjrx32PSAowx3NJIxfhLBS+KTiovLx8wy8bFxQAT\/xsA30AVYNZsHmkLMGNHn4OH7jbPxMs+MO6vHzf2NQOM+\/MSix7L0jJgw5AxgF+dHiHp7m16X1yPS5YsgbVr1wrfNtzzI0aMgMrKygGS0GcBfjMc4MRCQ68\/M2kBxo2JYYBxQ8XY96EMMD8fAY1nrS0wY8ecg4cqzoT9AOUopNjPv9kIaG+\/ee4PcLg7MdPsJ7IFho6OaG4dA4zE3r752rNw8+yzlnBkBjDTp08fcIxktPSjHxwDjPxnAgOMvFYhdzLAaIjnoabKALOpXA5g7jU\/QvKQBDyUIAVobyO8IMQk4jU5YzJgJt5Eq4NE8IJz92n3YcBkfY4BRmJvz\/h6O9w1vyGkb\/qjpK2tDXbs2AFz5syxtMCg1X\/WrFn9S4xTKsjvNgYYea0YYDS08nJTVYBZu3E4NDbZWGAu7oJlP2CA8fL8W1lgGGDia+Yo6oiix8jK5BRg3NrbTnxgUGkrH5n4monojJYBRkNntsBoiOehpsoA8\/dl0NiUZvkmY7\/WBct+GPpXmoden4diooAxRcLPW59NSI0SzQITDC84acoA4+LeNotCChcgwgDjbKsxwDjTa8DdDDAa4nmoqTLArC+xB5hLfLDsfvMwag9JwEMJc4SE305UP5hEAhgzeNECGN7bcfGZwACjMU0MMBrieaipMsA8PQQaG20sMJd0w7Kl1o5+HpKCh3JeAdrbGF7cEDiWkH4wiQIw5PNilnRQ2QLDezsuPgsYYDSmiQFGQzwPNVUGmLVF0NiYan2ENLYbli1rkXYi9JAsST0U2ts72upEJtdEzAeTCABjBS9aFhje23Gx\/xlgNKaJAUZDPA81VQWYNasK7AFmXA88tLyNAcZD8y0zFNrbmOQNc4l0Qw1gVt5EuuIdYDC\/y\/Ml40SYe7hIMVULDO\/t+FjpDDAa88QAoyGeh5oqA8wTOdDYYGOBGe+Hhx7tZIDx0HzLDMUIMHg\/\/qJMtLpI8QwwMvCiY4FZw3tbZpvE\/B4GGI0pYIDREM9DTZUB5vEsaGxIsT5CmhCAh1b4GGA8NN8yQzECDPrB0FFFItVGitdEdpRhNzulUxztWV3KFhje2zLbJOb3MMBoTAEDjIZ4MWhaXJIGxaVpUFySLsoH4P\/jVVyaLv6NBT6xIrXdRfO++rF0aKy3BphxE3rhocoeBhg7UT3282CAweFhUUAEmUSxxMQjwCC84DwMSWuSOtJTBRje2x7bkGGGwwCjMU\/0IYdVqJ94oEajJ27qtgIEJ+OnZAlYwa\/0vYbzBRiPfZXd\/9iZU1ulIaMfYFYANNZbj3zcRICHHgfpvt3WgftTU8AMYLAnDNe9NScLWnpbpH6Bqj09Oq3iDWAIXsak++Hlzt1SRTaVAYb3dnQWoeZTGGA0BOwHGPyF6OuC997pgFdeatXokZuqKkBwcvXsHGFlwa94Iaw0NmdAQ0s6HPsyGxBaCGDoWeNGdsLDC62ryhrHRfO+6mEfNNb3Wg553KRUWP6EXDE5s4RXxs4xq+fGjRuBCoxy1VrV1WLfLhzAYEuqcIz\/jmdrTEFqAdyTey9UNn4BH\/k67EWJ8R0Ej+iwe9J\/Umo0qgDj9t6WGizf5FgBBhjHkl1oQB9yz75YDlha\/ZZrmsQP36vqgIZaP8OMhrYyTRFa0LJy9exs8ZWABSEFYQVBxWhlCdenMsAsb4eGOjuASYOHn8q2tcDIpBynSulYyRaLxD322GPwzDPPwIEDB2Tk4nscKGAFMNQN+cW0BFpEJMwB334HT4j9rfEEMAQvqLGT4prKAOPi3o79TCfuCBhgNOa2\/y\/xfx4tflkWF\/bAjKktMH7kOQE04hdqnR+OHuoSQHP0cBccPeTTeGJyNyVgwSOhYAvL0a8G9VtYnKqkCjBPLWuGhrqA5ePGTU6HR1bl2wKMWdXaESNGAMKK2YXAg5Vrt27dygDjdMIl7pcBGOwGjzXwlyvCDIKM01+wEkOJ2C3xAjCo7Q\/y85QgURVg3NzbEZtA7hgYYGwWgbFSaLDJPhhgjF0hzAwp6BYgYwQagpqG2h4BMwg4DXU9AnDw33xdUICApe9rnx8LHf\/s\/yRfGViCNVYFmCeX1tvO2fjJmfDImiIlgJk+fTosXrw4ZEnQUVJVVRVs3ryZl4yCAlb7GruTBRh6NPlnXJqZK0DGyTGHwvBda7I8\/2HY1FwNb3aeda1PNzuSDZcO90xVgHFzb7upB\/c1UAEGGIsVgT4JFRUVsG7dOrjqqqtg9uzZsGLFCjh+\/LhoZQUwZt0aoQb\/XVzQ02+pofsF0JyHG\/weWm2SBW6MFhb6twC+80dBeCyE4OL2pQowTyw5JebK6pq3oBDm\/bfBpgCDhdsmTJgAbW1tsGPHDpgzZw6sXbtWrK9ly5aBmQUGLTWrVq2C7du3w65du9yWIin6s9vXKgBjBjLx4B\/jZYChcGmdUg6qACOzt8dPGQSPriuz\/eMkKTZVjF6SAcZCePwrbezYsQJaSktLQ35xOAWYcI9CmMELf5EOKewWR1GJDjfBUULRBJbgeVAFmJU\/\/AIaarstt+7V1xXA4mX2H3IyPjDGX7zs96L+iWm3r3UAhkZFx0r4S9jLIONVgCF40c2ArAowMnt7\/NRs+O9\/N4IBRn0rardkgLEBmLKyMmHGx798MU\/I3r17+832RifexpYM7ckw6wCPoYTlxgA29G\/j\/WS56fvadxxFR1O6A0N\/E7IEqfYVnH+FnG7JwoKRQujHcuCTAtVHKLdDjVWikDY+YQ8wxaUZsOInY6Q+5MyikPB78+fPh5UrVwqfF7TY0IWWmyeffJJ9YBzOPAKM1b42AgxG6GAiO9ULQWZGVqoI+\/XihVFIH\/naxTGSly7SDY\/iMGRd9SpIKYC\/zrldav8Z593tva06fm5nrQADjAbADB8+XPwCQZDhK74VOHjwICxdulTqJZzOu5O+pQbAN2kpIAMwTudYa0DcOKIKONl\/TufdSd8Rfckk7ZwBxgZgrI6QsCkuePyPr\/hW4PTp04D\/yV5O5t1p37Jj4PvUFJA5QqK97cYfJ07Wldob6bXy4ueXm5o53X+8t\/XWUzRbM8BYqC3j7BfNyeJnsQKsgL4CvK\/1NeQeWAEvKMAAYzMLFG7p8\/lgy5YtHPnhhVXLY2AFNBXgfa0pIDdnBTygAAOMByaBh8AKsAKsACvACrACzhRggHGmF9\/NCrACrAArwAqwAh5QgAFGYxLssnlqdB2Tppg8bdGiReLZ+\/btM01jbwz1xfuOHDlimi02Ji+g8VBOEKchXgI25b3NezsBl3XCvRIDjOKUJpojoPEXOEpCGYiDE6Yh5ARnJFaU0DPNCMpwQOzn5JlpidlAeG9fyDYes0lw6cG8t10S0qPdMMAoToxsKKZi91FvhmBy6623irw2tbW1sHHjRjCrtWPMoRH1QUbggVREES1OCxcuhOeee44dtSOgczx1yXs7tP5WPM0fjZX3djzOmrMxM8A406v\/bplkWIpdx6SZ0bKCA0CA+fzzzwccI1ERwfLycjHGRIrMwr\/U7rvvPgaYmKw+bz2U9zbvbW+tSB5NOAUYYBTXRjJ+yAVLZbTaxHttHgYYxY2QgM14b4MoJkoWWd7bCbjIE+SVGGAUJzJZzcxGuRLpl34ivYvikuZm5xXgvQ2QSPshkd6FN+lABRhgFFdEMjr6BVdMNn7QHz9+XFFJbzTjDzlvzIMXRsF7exfw3vbCSuQx2CnAAGOnkMXPEy2bpzGMeufOnf1Vt\/E98aqsrBR\/mWHRw8zMTPaB0Vg73NTbCvDeTpzM4\/zHibf3ms7oGGB01OO2rAArwAqwAqwAKxATBRhgYiI7P5QVYAVYAVaAFWAFdBRggNFRj9uyAqwAK8AKsAKsQEwUYICJiez8UFaAFWAFWAFWgBXQUYABRkc9bssKsAKsACvACrACMVGAASYmsvNDWQFWgBVgBVgBVkBHAQYYHfW4LSvACrACrAArwArEREnKPSwAAAFMSURBVAEGmJjIzg9lBVgBVoAVYAVYAR0FGGB01OO2rAArwAqwAqwAKxATBRhgYiI7P5QVYAVYAVaAFWAFdBRggNFRj9uyAqwAK8AKsAKsQEwUYICJiez8UFaAFWAFWAFWgBXQUYABRkc9bssKsAKsACvACrACMVGAASYmsvNDWQFWgBVgBVgBVkBHAQYYHfW4LSvACrACrAArwArERAEGmJjIzg9lBVgBVoAVYAVYAR0FGGB01OO2rAArwAqwAqwAKxATBRhgYiI7P5QVYAVYAVaAFWAFdBRggNFRj9uyAqwAK8AKsAKsQEwUYICJiez8UFaAFWAFWAFWgBXQUYABRkc9bssKsAKsACvACrACMVGAASYmsvNDWQFWgBVgBVgBVkBHAQYYHfW4LSvACrACrAArwArERAEGmJjIzg9lBVgBVoAVYAVYAR0F\/j\/2JPsfkjUf0wAAAABJRU5ErkJggg==","height":337,"width":560}} +%--- diff --git a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_0.png b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_0.png index e4d8ec9..7faa063 100644 Binary files a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_0.png and b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_0.png differ diff --git a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_1.png b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_1.png index 0c4d743..7967cfa 100644 Binary files a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_1.png and b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_1.png differ diff --git a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_2.png b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_2.png index 42dbfda..c86aed2 100644 Binary files a/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_2.png and b/physics-informed-neural-networks-for-steady-cavity-flow/images/figure_2.png differ