@@ -1407,7 +1407,7 @@ def test_weighted_prgain_majoring(self):
14071407 )
14081408
14091409 # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1410- # scaling_facor (P/N) = 7/3
1410+ # scaling_factor (P/N) = 7/3
14111411 # recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
14121412 # precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
14131413 # heights = [max(0, 1), max(1, 1)] = [1, 1]
@@ -1426,7 +1426,7 @@ def test_weighted_prgain_minoring(self):
14261426 )
14271427
14281428 # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1429- # scaling_facor (P/N) = 7/3
1429+ # scaling_factor (P/N) = 7/3
14301430 # recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
14311431 # precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
14321432 # heights = [min(0, 1), min(1, 1)] = [0, 1]
@@ -1443,7 +1443,7 @@ def test_weighted_prgain_interpolation(self):
14431443 )
14441444
14451445 # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1446- # scaling_facor (P/N) = 7/3
1446+ # scaling_factor (P/N) = 7/3
14471447 # recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
14481448 # precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
14491449 # heights = [(0+1)/2, (1+1)/2] = [0.5, 1]
@@ -1461,7 +1461,7 @@ def test_prgain_interpolation(self):
14611461 result = auc_obj (y_true , y_pred )
14621462
14631463 # tp = [5, 3, 0], fp = [5, 1, 0], fn = [0, 2, 5], tn = [0, 4, 4]
1464- # scaling_facor (P/N) = 5/5 = 1
1464+ # scaling_factor (P/N) = 5/5 = 1
14651465 # recall_gain = 1 - [0/5, 2/3, 5/0] = [1, 1/3, -inf] -> [1, 1/3, 0]
14661466 # precision_gain = 1 - [5/5, 1/3, 0/0] = [1, 1/3, NaN] -> [0, 2/3, 1]
14671467 # heights = [(0+2/3)/2, (2/3+1)/2] = [0.333333, 0.833333]
0 commit comments