@@ -1636,41 +1636,6 @@ Other minor changes
16361636 moufangLoop : MoufangLoop a ℓ₁ → MoufangLoop b ℓ₂ → MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
16371637 ```
16381638
1639- * Added new functions and proofs to ` Algebra.Construct.Flip.Op ` :
1640- ``` agda
1641- zero : Zero ≈ ε ∙ → Zero ≈ ε (flip ∙)
1642- distributes : (≈ DistributesOver ∙) + → (≈ DistributesOver (flip ∙)) +
1643- isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# →
1644- IsSemiringWithoutAnnihilatingZero + (flip *) 0# 1#
1645- isSemiring : IsSemiring + * 0# 1# → IsSemiring + (flip *) 0# 1#
1646- isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# →
1647- IsCommutativeSemiring + (flip *) 0# 1#
1648- isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring + * 0# 1# →
1649- IsCancellativeCommutativeSemiring + (flip *) 0# 1#
1650- isIdempotentSemiring : IsIdempotentSemiring + * 0# 1# →
1651- IsIdempotentSemiring + (flip *) 0# 1#
1652- isQuasiring : IsQuasiring + * 0# 1# → IsQuasiring + (flip *) 0# 1#
1653- isRingWithoutOne : IsRingWithoutOne + * - 0# → IsRingWithoutOne + (flip *) - 0#
1654- isNonAssociativeRing : IsNonAssociativeRing + * - 0# 1# →
1655- IsNonAssociativeRing + (flip *) - 0# 1#
1656- isRing : IsRing ≈ + * - 0# 1# → IsRing ≈ + (flip *) - 0# 1#
1657- isNearring : IsNearring + * 0# 1# - → IsNearring + (flip *) 0# 1# -
1658- isCommutativeRing : IsCommutativeRing + * - 0# 1# →
1659- IsCommutativeRing + (flip *) - 0# 1#
1660- semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ →
1661- SemiringWithoutAnnihilatingZero a ℓ
1662- commutativeSemiring : CommutativeSemiring a ℓ → CommutativeSemiring a ℓ
1663- cancellativeCommutativeSemiring : CancellativeCommutativeSemiring a ℓ →
1664- CancellativeCommutativeSemiring a ℓ
1665- idempotentSemiring : IdempotentSemiring a ℓ → IdempotentSemiring a ℓ
1666- quasiring : Quasiring a ℓ → Quasiring a ℓ
1667- ringWithoutOne : RingWithoutOne a ℓ → RingWithoutOne a ℓ
1668- nonAssociativeRing : NonAssociativeRing a ℓ → NonAssociativeRing a ℓ
1669- nearring : Nearring a ℓ → Nearring a ℓ
1670- ring : Ring a ℓ → Ring a ℓ
1671- commutativeRing : CommutativeRing a ℓ → CommutativeRing a ℓ
1672- ```
1673-
16741639* Added new definition to ` Algebra.Definitions ` :
16751640 ``` agda
16761641 LeftDividesˡ : Op₂ A → Op₂ A → Set _
0 commit comments