Skip to content

[LoRA fusion tests] SDXL LoRA tests with fusion when using peft #6185

@sayakpaul

Description

@sayakpaul

Currently, the following test is failing:

RUN_SLOW=1 pytest tests/lora/test_lora_layers_peft.py::LoraSDXLIntegrationTests::test_sdxl_1_0_fuse_unfuse_all

Error:

self = <test_lora_layers_peft.LoraSDXLIntegrationTests testMethod=test_sdxl_1_0_fuse_unfuse_all>

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())
    
        pipe.load_lora_weights(
            "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
        )
    
        fused_te_state_dict = pipe.text_encoder.state_dict()
        fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
        unet_state_dict = pipe.unet.state_dict()
    
        for key, value in text_encoder_1_sd.items():
>           self.assertTrue(torch.allclose(fused_te_state_dict[key], value))
E           KeyError: 'text_model.encoder.layers.0.self_attn.k_proj.weight'

When I investigated fused_te_state_dict with the following:

targeted_layers = list(filter(lambda x: "text_model.encoder.layers.0.self_attn" in x, fused_te_state_dict.keys()))
print(targeted_layers)

I got:

['text_model.encoder.layers.0.self_attn.k_proj.base_layer.weight', 'text_model.encoder.layers.0.self_attn.k_proj.base_layer.bias', 'text_model.encoder.layers.0.self_attn.k_proj.lora_A.default_0.weight', 'text_model.encoder.layers.0.self_attn.k_proj.lora_B.default_0.weight', 'text_model.encoder.layers.0.self_attn.v_proj.base_layer.weight', 'text_model.encoder.layers.0.self_attn.v_proj.base_layer.bias', 'text_model.encoder.layers.0.self_attn.v_proj.lora_A.default_0.weight', 'text_model.encoder.layers.0.self_attn.v_proj.lora_B.default_0.weight', 'text_model.encoder.layers.0.self_attn.q_proj.base_layer.weight', 'text_model.encoder.layers.0.self_attn.q_proj.base_layer.bias', 'text_model.encoder.layers.0.self_attn.q_proj.lora_A.default_0.weight', 'text_model.encoder.layers.0.self_attn.q_proj.lora_B.default_0.weight', 'text_model.encoder.layers.0.self_attn.out_proj.base_layer.weight', 'text_model.encoder.layers.0.self_attn.out_proj.base_layer.bias', 'text_model.encoder.layers.0.self_attn.out_proj.lora_A.default_0.weight', 'text_model.encoder.layers.0.self_attn.out_proj.lora_B.default_0.weight']

So the error makes sense to me. @BenjaminBossan @younesbelkada could you take a look here?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions