|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import cv2\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import torch\n", |
| 12 | + "from controlnet_aux.midas import MidasDetector\n", |
| 13 | + "from PIL import Image\n", |
| 14 | + "\n", |
| 15 | + "from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter\n", |
| 16 | + "from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel\n", |
| 17 | + "from diffusers.utils import load_image\n", |
| 18 | + "from src.diffusers import StableDiffusionXLControlNetAdapterInpaintPipeline" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "controlnet_depth = ControlNetModel.from_pretrained(\n", |
| 28 | + " \"diffusers/controlnet-depth-sdxl-1.0\",\n", |
| 29 | + " torch_dtype=torch.float16,\n", |
| 30 | + " variant=\"fp16\",\n", |
| 31 | + " use_safetensors=True\n", |
| 32 | + ")\n", |
| 33 | + "adapter_depth = T2IAdapter.from_pretrained(\n", |
| 34 | + " \"TencentARC/t2i-adapter-depth-midas-sdxl-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True\n", |
| 35 | + ")\n", |
| 36 | + "vae = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16, use_safetensors=True)\n", |
| 37 | + "\n", |
| 38 | + "pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(\n", |
| 39 | + " \"diffusers/stable-diffusion-xl-1.0-inpainting-0.1\",\n", |
| 40 | + " controlnet=controlnet_depth,\n", |
| 41 | + " adapter=adapter_depth,\n", |
| 42 | + " vae=vae,\n", |
| 43 | + " variant=\"fp16\",\n", |
| 44 | + " use_safetensors=True,\n", |
| 45 | + " torch_dtype=torch.float16,\n", |
| 46 | + ")\n", |
| 47 | + "pipe = pipe.to(\"cuda\")\n", |
| 48 | + "pipe.enable_xformers_memory_efficient_attention()\n", |
| 49 | + "# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)\n", |
| 50 | + "midas_depth = MidasDetector.from_pretrained(\n", |
| 51 | + " \"valhalla/t2iadapter-aux-models\", filename=\"dpt_large_384.pt\", model_type=\"dpt_large\"\n", |
| 52 | + ").to(\"cuda\")\n", |
| 53 | + "\n", |
| 54 | + "prompt = \"a tiger sitting on a park bench\"\n", |
| 55 | + "img_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png\"\n", |
| 56 | + "mask_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png\"\n", |
| 57 | + "\n", |
| 58 | + "image = load_image(img_url).resize((1024, 1024))\n", |
| 59 | + "mask_image = load_image(mask_url).resize((1024, 1024))\n", |
| 60 | + "\n", |
| 61 | + "depth_image = midas_depth(\n", |
| 62 | + " image, detect_resolution=512, image_resolution=1024\n", |
| 63 | + ")\n", |
| 64 | + "\n", |
| 65 | + "strength = 0.4\n", |
| 66 | + "\n", |
| 67 | + "images = pipe(\n", |
| 68 | + " prompt,\n", |
| 69 | + " image=image,\n", |
| 70 | + " mask_image=mask_image,\n", |
| 71 | + " control_image=depth_image,\n", |
| 72 | + " adapter_image=depth_image,\n", |
| 73 | + " num_inference_steps=30,\n", |
| 74 | + " controlnet_conditioning_scale=strength,\n", |
| 75 | + " adapter_conditioning_scale=strength,\n", |
| 76 | + " strength=0.7,\n", |
| 77 | + ").images" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [], |
| 85 | + "source": [ |
| 86 | + "controlnet_depth = ControlNetModel.from_pretrained(\n", |
| 87 | + " \"diffusers/controlnet-depth-sdxl-1.0\",\n", |
| 88 | + " torch_dtype=torch.float16,\n", |
| 89 | + " variant=\"fp16\",\n", |
| 90 | + " use_safetensors=True\n", |
| 91 | + ")\n", |
| 92 | + "controlnet_canny = ControlNetModel.from_pretrained(\n", |
| 93 | + " \"diffusers/controlnet-canny-sdxl-1.0\",\n", |
| 94 | + " torch_dtype=torch.float16,\n", |
| 95 | + " variant=\"fp16\",\n", |
| 96 | + " use_safetensors=True\n", |
| 97 | + ")\n", |
| 98 | + "adapter_depth = T2IAdapter.from_pretrained(\n", |
| 99 | + " \"TencentARC/t2i-adapter-depth-midas-sdxl-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True\n", |
| 100 | + ")\n", |
| 101 | + "adapter_canny = T2IAdapter.from_pretrained(\n", |
| 102 | + " \"TencentARC/t2i-adapter-canny-sdxl-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True\n", |
| 103 | + ")\n", |
| 104 | + "vae = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16, use_safetensors=True)\n", |
| 105 | + "\n", |
| 106 | + "pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(\n", |
| 107 | + " \"stabilityai/stable-diffusion-xl-base-1.0\",\n", |
| 108 | + " controlnet=MultiControlNetModel([controlnet_depth, controlnet_canny]),\n", |
| 109 | + " adapter=MultiAdapter([adapter_depth, adapter_canny]),\n", |
| 110 | + " vae=vae,\n", |
| 111 | + " variant=\"fp16\",\n", |
| 112 | + " use_safetensors=True,\n", |
| 113 | + " torch_dtype=torch.float16,\n", |
| 114 | + ")\n", |
| 115 | + "pipe = pipe.to(\"cuda\")\n", |
| 116 | + "pipe.enable_xformers_memory_efficient_attention()\n", |
| 117 | + "# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)\n", |
| 118 | + "midas_depth = MidasDetector.from_pretrained(\n", |
| 119 | + " \"valhalla/t2iadapter-aux-models\", filename=\"dpt_large_384.pt\", model_type=\"dpt_large\"\n", |
| 120 | + ").to(\"cuda\")\n", |
| 121 | + "\n", |
| 122 | + "prompt = \"a person sitting on a bench in the park\"\n", |
| 123 | + "img_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png\"\n", |
| 124 | + "mask_url = \"https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png\"\n", |
| 125 | + "\n", |
| 126 | + "image = load_image(img_url).resize((1024, 1024))\n", |
| 127 | + "mask_image = load_image(mask_url).resize((1024, 1024))\n", |
| 128 | + "\n", |
| 129 | + "depth_image = midas_depth(\n", |
| 130 | + " image, detect_resolution=512, image_resolution=1024\n", |
| 131 | + ")\n", |
| 132 | + "canny_image = Image.fromarray(cv2.Canny(np.array(image), 100, 200)).convert(\"RGB\")\n", |
| 133 | + "\n", |
| 134 | + "strength = 0.5\n", |
| 135 | + "\n", |
| 136 | + "images = pipe(\n", |
| 137 | + " prompt,\n", |
| 138 | + " mask_image=mask_image,\n", |
| 139 | + " control_image=[depth_image, canny_image],\n", |
| 140 | + " adapter_image=[depth_image, canny_image],\n", |
| 141 | + " num_inference_steps=30,\n", |
| 142 | + " controlnet_conditioning_scale=strength,\n", |
| 143 | + " adapter_conditioning_scale=strength,\n", |
| 144 | + ").images" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "url = \"https://images.pexels.com/photos/6518723/pexels-photo-6518723.jpeg\"\n", |
| 154 | + "image = load_image(url)\n", |
| 155 | + "prompt = \"a man and woman sitting on a couch with party hats on. high resolution image\"\n", |
| 156 | + "negative_prompt = \"ugly, deformed\"\n", |
| 157 | + "\n", |
| 158 | + "depth_image = midas_depth(\n", |
| 159 | + " image, detect_resolution=512, image_resolution=1024\n", |
| 160 | + ")\n", |
| 161 | + "only_adapter = []\n", |
| 162 | + "only_control = []\n", |
| 163 | + "combined = []\n", |
| 164 | + "combined_all = []\n", |
| 165 | + "strength = np.linspace(0.0, 1.0, 11)\n", |
| 166 | + "for control_strength in strength:\n", |
| 167 | + " for adapter_strength in strength:\n", |
| 168 | + " if adapter_strength == 0.0 and control_strength == 0.0:\n", |
| 169 | + " continue\n", |
| 170 | + " if (adapter_strength + control_strength == 1.0) or (adapter_strength == 0 or control_strength == 0):\n", |
| 171 | + " pass\n", |
| 172 | + " else:\n", |
| 173 | + " continue\n", |
| 174 | + " print(f\"adapter strength: {adapter_strength}, control strength: {control_strength}\")\n", |
| 175 | + " images = pipe(\n", |
| 176 | + " [prompt],\n", |
| 177 | + " negative_prompt=[negative_prompt],\n", |
| 178 | + " control_image=depth_image,\n", |
| 179 | + " adapter_image=depth_image,\n", |
| 180 | + " num_inference_steps=30,\n", |
| 181 | + " num_images_per_prompt=1,\n", |
| 182 | + " controlnet_conditioning_scale=control_strength,\n", |
| 183 | + " adapter_conditioning_scale=adapter_strength,\n", |
| 184 | + " guidance_scale=7.5,\n", |
| 185 | + " generator=torch.Generator().manual_seed(4)\n", |
| 186 | + " ).images[0]\n", |
| 187 | + " if adapter_strength == 0.0:\n", |
| 188 | + " only_control.append(images)\n", |
| 189 | + " elif control_strength == 0.0:\n", |
| 190 | + " only_adapter.append(images)\n", |
| 191 | + " if adapter_strength + control_strength == 1.0:\n", |
| 192 | + " combined.append(images)" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "from math import sqrt\n", |
| 202 | + "from diffusers.utils import make_image_grid\n", |
| 203 | + "make_image_grid(only_control, rows=1, cols=len(only_control)).save(\"only_control.jpg\", quality=95)\n", |
| 204 | + "make_image_grid(only_adapter, rows=1, cols=len(only_adapter)).save(\"only_adapter.jpg\", quality=95)\n", |
| 205 | + "make_image_grid(combined, rows=1, cols=len(combined)).save(\"combined.jpg\", quality=95)" |
| 206 | + ] |
| 207 | + } |
| 208 | + ], |
| 209 | + "metadata": { |
| 210 | + "kernelspec": { |
| 211 | + "display_name": "hax-cv-7iGZNdAM-py3.10", |
| 212 | + "language": "python", |
| 213 | + "name": "python3" |
| 214 | + }, |
| 215 | + "language_info": { |
| 216 | + "codemirror_mode": { |
| 217 | + "name": "ipython", |
| 218 | + "version": 3 |
| 219 | + }, |
| 220 | + "file_extension": ".py", |
| 221 | + "mimetype": "text/x-python", |
| 222 | + "name": "python", |
| 223 | + "nbconvert_exporter": "python", |
| 224 | + "pygments_lexer": "ipython3", |
| 225 | + "version": "3.10.10" |
| 226 | + } |
| 227 | + }, |
| 228 | + "nbformat": 4, |
| 229 | + "nbformat_minor": 2 |
| 230 | +} |
0 commit comments