Skip to content
This repository was archived by the owner on Aug 2, 2021. It is now read-only.
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
356 changes: 356 additions & 0 deletions swarm/pss/forwarding_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,356 @@
package pss

import (
"fmt"
"math/rand"
"testing"
"time"

"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/protocols"
"github.com/ethereum/go-ethereum/swarm/network"
"github.com/ethereum/go-ethereum/swarm/pot"
whisper "github.com/ethereum/go-ethereum/whisper/whisperv5"
)

type testCase struct {
name string
recipient []byte
peers []pot.Address
expected []int
exclusive bool
nFails int
success bool
errors string
}

var testCases []testCase

// the purpose of this test is to see that pss.forward() function correctly
// selects the peers for message forwarding, depending on the message address
// and kademlia constellation.
func TestForwardBasic(t *testing.T) {
baseAddrBytes := make([]byte, 32)
for i := 0; i < len(baseAddrBytes); i++ {
baseAddrBytes[i] = 0xFF
}
var c testCase
base := pot.NewAddressFromBytes(baseAddrBytes)
var peerAddresses []pot.Address
const depth = 10
for i := 0; i <= depth; i++ {
// add two peers for each proximity order
a := pot.RandomAddressAt(base, i)
peerAddresses = append(peerAddresses, a)
a = pot.RandomAddressAt(base, i)
peerAddresses = append(peerAddresses, a)
}

// skip one level, add one peer at one level deeper.
// as a result, we will have an edge case of three peers in nearest neighbours' bin.
peerAddresses = append(peerAddresses, pot.RandomAddressAt(base, depth+2))

kad := network.NewKademlia(base[:], network.NewKadParams())
ps := createPss(t, kad)
addPeers(kad, peerAddresses)

const firstNearest = depth * 2 // shallowest peer in the nearest neighbours' bin
nearestNeighbours := []int{firstNearest, firstNearest + 1, firstNearest + 2}
var all []int // indices of all the peers
for i := 0; i < len(peerAddresses); i++ {
all = append(all, i)
}

for i := 0; i < len(peerAddresses); i++ {
// send msg directly to the known peers (recipient address == peer address)
c = testCase{
name: fmt.Sprintf("Send direct to known, id: [%d]", i),
recipient: peerAddresses[i][:],
peers: peerAddresses,
expected: []int{i},
exclusive: false,
}
testCases = append(testCases, c)
}

for i := 0; i < firstNearest; i++ {
// send random messages with proximity orders, corresponding to PO of each bin,
// with one peer being closer to the recipient address
a := pot.RandomAddressAt(peerAddresses[i], 64)
c = testCase{
name: fmt.Sprintf("Send random to each PO, id: [%d]", i),
recipient: a[:],
peers: peerAddresses,
expected: []int{i},
exclusive: false,
}
testCases = append(testCases, c)
}

for i := 0; i < firstNearest; i++ {
// send random messages with proximity orders, corresponding to PO of each bin,
// with random proximity relative to the recipient address
po := i / 2
a := pot.RandomAddressAt(base, po)
c = testCase{
name: fmt.Sprintf("Send direct to known, id: [%d]", i),
recipient: a[:],
peers: peerAddresses,
expected: []int{po * 2, po*2 + 1},
exclusive: true,
}
testCases = append(testCases, c)
}

for i := firstNearest; i < len(peerAddresses); i++ {
// recipient address falls into the nearest neighbours' bin
a := pot.RandomAddressAt(base, i)
c = testCase{
name: fmt.Sprintf("recipient address falls into the nearest neighbours' bin, id: [%d]", i),
recipient: a[:],
peers: peerAddresses,
expected: nearestNeighbours,
exclusive: false,
}
testCases = append(testCases, c)
}

// send msg with proximity order much deeper than the deepest nearest neighbour
a2 := pot.RandomAddressAt(base, 77)
c = testCase{
name: "proximity order much deeper than the deepest nearest neighbour",
recipient: a2[:],
peers: peerAddresses,
expected: nearestNeighbours,
exclusive: false,
}
testCases = append(testCases, c)

// test with partial addresses
const part = 12

for i := 0; i < firstNearest; i++ {
// send messages with partial address falling into different proximity orders
po := i / 2
if i%8 != 0 {
c = testCase{
name: fmt.Sprintf("partial address falling into different proximity orders, id: [%d]", i),
recipient: peerAddresses[i][:i],
peers: peerAddresses,
expected: []int{po * 2, po*2 + 1},
exclusive: true,
}
testCases = append(testCases, c)
}
c = testCase{
name: fmt.Sprintf("extended partial address falling into different proximity orders, id: [%d]", i),
recipient: peerAddresses[i][:part],
peers: peerAddresses,
expected: []int{po * 2, po*2 + 1},
exclusive: true,
}
testCases = append(testCases, c)
}

for i := firstNearest; i < len(peerAddresses); i++ {
// partial address falls into the nearest neighbours' bin
c = testCase{
name: fmt.Sprintf("partial address falls into the nearest neighbours' bin, id: [%d]", i),
recipient: peerAddresses[i][:part],
peers: peerAddresses,
expected: nearestNeighbours,
exclusive: false,
}
testCases = append(testCases, c)
}

// partial address with proximity order deeper than any of the nearest neighbour
a3 := pot.RandomAddressAt(base, part)
c = testCase{
name: "partial address with proximity order deeper than any of the nearest neighbour",
recipient: a3[:part],
peers: peerAddresses,
expected: nearestNeighbours,
exclusive: false,
}
testCases = append(testCases, c)

// special cases where partial address matches a large group of peers

// zero bytes of address is given, msg should be delivered to all the peers
c = testCase{
name: "zero bytes of address is given",
recipient: []byte{},
peers: peerAddresses,
expected: all,
exclusive: false,
}
testCases = append(testCases, c)

// luminous radius of 8 bits, proximity order 8
indexAtPo8 := 16
c = testCase{
name: "luminous radius of 8 bits",
recipient: []byte{0xFF},
peers: peerAddresses,
expected: all[indexAtPo8:],
exclusive: false,
}
testCases = append(testCases, c)

// luminous radius of 256 bits, proximity order 8
a4 := pot.Address{}
a4[0] = 0xFF
c = testCase{
name: "luminous radius of 256 bits",
recipient: a4[:],
peers: peerAddresses,
expected: []int{indexAtPo8, indexAtPo8 + 1},
exclusive: true,
}
testCases = append(testCases, c)

// check correct behaviour in case send fails
for i := 2; i < firstNearest-3; i += 2 {
po := i / 2
// send random messages with proximity orders, corresponding to PO of each bin,
// with different numbers of failed attempts.
// msg should be received by only one of the deeper peers.
a := pot.RandomAddressAt(base, po)
c = testCase{
name: fmt.Sprintf("Send direct to known, id: [%d]", i),
recipient: a[:],
peers: peerAddresses,
expected: all[i+1:],
exclusive: true,
nFails: rand.Int()%3 + 2,
}
testCases = append(testCases, c)
}

for _, c := range testCases {
testForwardMsg(t, ps, &c)
}
}

// this function tests the forwarding of a single message. the recipient address is passed as param,
// along with addresses of all peers, and indices of those peers which are expected to receive the message.
func testForwardMsg(t *testing.T, ps *Pss, c *testCase) {
recipientAddr := c.recipient
peers := c.peers
expected := c.expected
exclusive := c.exclusive
nFails := c.nFails
tries := 0 // number of previous failed tries

resultMap := make(map[pot.Address]int)

defer func() { sendFunc = sendMsg }()
sendFunc = func(_ *Pss, sp *network.Peer, _ *PssMsg) bool {
if tries < nFails {
tries++
return false
}
a := pot.NewAddressFromBytes(sp.Address())
resultMap[a]++
return true
}

msg := newTestMsg(recipientAddr)
ps.forward(msg)

// check test results
var fail bool
precision := len(recipientAddr)
if precision > 4 {
precision = 4
}
s := fmt.Sprintf("test [%s]\nmsg address: %x..., radius: %d", c.name, recipientAddr[:precision], 8*len(recipientAddr))

// false negatives (expected message didn't reach peer)
if exclusive {
var cnt int
for _, i := range expected {
a := peers[i]
cnt += resultMap[a]
resultMap[a] = 0
}
if cnt != 1 {
s += fmt.Sprintf("\n%d messages received by %d peers with indices: [%v]", cnt, len(expected), expected)
fail = true
}
} else {
for _, i := range expected {
a := peers[i]
received := resultMap[a]
if received != 1 {
s += fmt.Sprintf("\npeer number %d [%x...] received %d messages", i, a[:4], received)
fail = true
}
resultMap[a] = 0
}
}

// false positives (unexpected message reached peer)
for k, v := range resultMap {
if v != 0 {
// find the index of the false positive peer
var j int
for j = 0; j < len(peers); j++ {
if peers[j] == k {
break
}
}
s += fmt.Sprintf("\npeer number %d [%x...] received %d messages", j, k[:4], v)
fail = true
}
}

if fail {
t.Fatal(s)
}
}

func addPeers(kad *network.Kademlia, addresses []pot.Address) {
for _, a := range addresses {
p := newTestDiscoveryPeer(a, kad)
kad.On(p)
}
}

func createPss(t *testing.T, kad *network.Kademlia) *Pss {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why not use pss_test.go:newTestPss()?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

because i wanted to use specific sttings (e.g. base address)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I understand, but now we have at least three different functions for setting up pss :'(

How about expanding the existing one with a chained method? This is a convention we've agreed to use in Swarm.

privKey, err := crypto.GenerateKey()
pssp := NewPssParams().WithPrivateKey(privKey)
ps, err := NewPss(kad, pssp)
if err != nil {
t.Fatal(err.Error())
}
return ps
}

func newTestDiscoveryPeer(addr pot.Address, kad *network.Kademlia) *network.Peer {
rw := &p2p.MsgPipeRW{}
p := p2p.NewPeer(enode.ID{}, "test", []p2p.Cap{})
pp := protocols.NewPeer(p, rw, &protocols.Spec{})
bp := &network.BzzPeer{
Peer: pp,
BzzAddr: &network.BzzAddr{
OAddr: addr.Bytes(),
UAddr: []byte(fmt.Sprintf("%x", addr[:])),
},
}
return network.NewPeer(bp, kad)
}

func newTestMsg(addr []byte) *PssMsg {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see code already existing in pss_test.go etc already creates messages inline in the test. Having a testmessage "factory" is fine, but then we should endeavour to use it the same way everywhere.

Also, I suggest it should generate random data for the payload data, and take a topic param.

Refactoring all that is of course not within scope of this PR.

Perhaps as a first step towards consolidation is that we put this method (and similar generic methods) in a file called common_test.go.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@gluk256 You didn't want to do anything with this?

msg := newPssMsg(&msgParams{})
msg.To = addr[:]
msg.Expire = uint32(time.Now().Add(time.Second * 60).Unix())
msg.Payload = &whisper.Envelope{
Topic: [4]byte{},
Data: []byte("i have nothing to hide"),
}
return msg
}
Loading