|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# GPU accelerated training\n", |
| 8 | + "\n", |
| 9 | + "Using twinLab you can accelerate the training time of some models using our cloud-based GPU training. In our testing, this has only produced reliable speed-ups for larger variational Gaussian Processes (`estimator_type=\"variational_gp\"`), or for models with output decomposition (either `output_explained_variance` or `output_retained_dimensions` set in `TrainParams`).\n", |
| 10 | + "\n", |
| 11 | + "Start, as usual, by importing the packages you need for this tutorial:" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 1, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [ |
| 19 | + { |
| 20 | + "name": "stdout", |
| 21 | + "output_type": "stream", |
| 22 | + "text": [ |
| 23 | + "\n", |
| 24 | + " ====== TwinLab Client Initialisation ======\n", |
| 25 | + " Version : 2.20.1.dev0\n", |
| 26 | + |
| 27 | + " Server : http://localhost:8000\n", |
| 28 | + " Environment : /Users/mead/digiLab/twinLab/tutorials/.env\n", |
| 29 | + "\n" |
| 30 | + ] |
| 31 | + } |
| 32 | + ], |
| 33 | + "source": [ |
| 34 | + "import twinlab as tl" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "We use the `tritium-desorption` example for this tutorial:" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 2, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "dataset_id = \"tritium-desorption-small\"\n", |
| 51 | + "dataset = tl.Dataset(dataset_id)\n", |
| 52 | + "df = tl.load_example_dataset(dataset_id)\n", |
| 53 | + "dataset.upload(df)" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "Now we setup the emulator to be trained. With this dataset we try to predict the desorption rate (a function of temperature, so this is a functional output model) as a function of parameters of the material used in the reactor wall (parametrized via `E1`, `E2`, `E3`, `n1`, `n2`). " |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": 3, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "emulator_id = \"tritium-desorption\"\n", |
| 70 | + "inputs = [\"E1\", \"E2\", \"E3\", \"n1\", \"n2\"]\n", |
| 71 | + "outputs = [f\"y{i}\" for i in range(624)]\n", |
| 72 | + "emulator = tl.Emulator(emulator_id)\n", |
| 73 | + "params = tl.TrainParams(output_retained_dimensions=5)\n", |
| 74 | + "\n", |
| 75 | + "# Create a dataset on which to make predictions\n", |
| 76 | + "df_test = df[inputs].sample(5, random_state=42).reset_index(drop=True)" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "The GPU is activated by setting `processor=\"gpu\"` in the call to `emulator.train`. Here we see that it cuts down training time by a factor of $\\sim 1/2$. This is not a life-changing improvement, but an improvement never-the-less." |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 4, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [ |
| 91 | + { |
| 92 | + "name": "stdout", |
| 93 | + "output_type": "stream", |
| 94 | + "text": [ |
| 95 | + "Training model on cpu\n", |
| 96 | + "Emulator 'tritium-desorption' has begun training.\n", |
| 97 | + "0:00:00: Job status: processing\n", |
| 98 | + "0:00:03: Job status: processing\n", |
| 99 | + "0:00:08: Job status: processing\n", |
| 100 | + "0:00:17: Job status: processing\n", |
| 101 | + "0:00:31: Job status: processing\n", |
| 102 | + "0:00:36: Job status: processing\n", |
| 103 | + "0:00:41: Job status: processing\n", |
| 104 | + "0:00:47: Job status: processing\n", |
| 105 | + "0:00:53: Job status: processing\n", |
| 106 | + "0:01:00: Job status: processing\n", |
| 107 | + "0:01:08: Job status: processing\n", |
| 108 | + "0:01:16: Job status: processing\n", |
| 109 | + "0:01:25: Job status: processing\n", |
| 110 | + "0:01:35: Job status: processing\n", |
| 111 | + "0:01:46: Job status: processing\n", |
| 112 | + "0:01:59: Job status: processing\n", |
| 113 | + "0:02:12: Job status: success\n", |
| 114 | + "Training of emulator tritium-desorption is complete!\n", |
| 115 | + "\n", |
| 116 | + "Predicting from trained cpu model...\n", |
| 117 | + "Predictions made successfully!\n", |
| 118 | + "\n", |
| 119 | + "Training model on gpu\n", |
| 120 | + "Emulator 'tritium-desorption' has begun training.\n", |
| 121 | + "0:00:00: Job status: processing\n", |
| 122 | + "0:00:01: Job status: processing\n", |
| 123 | + "0:00:03: Job status: processing\n", |
| 124 | + "0:00:04: Job status: processing\n", |
| 125 | + "0:00:06: Job status: processing\n", |
| 126 | + "0:00:08: Job status: processing\n", |
| 127 | + "0:00:11: Job status: processing\n", |
| 128 | + "0:00:13: Job status: processing\n", |
| 129 | + "0:00:16: Job status: processing\n", |
| 130 | + "0:00:19: Job status: processing\n", |
| 131 | + "0:00:22: Job status: processing\n", |
| 132 | + "0:00:26: Job status: processing\n", |
| 133 | + "0:00:30: Job status: processing\n", |
| 134 | + "0:00:35: Job status: processing\n", |
| 135 | + "0:00:40: Job status: processing\n", |
| 136 | + "0:00:45: Job status: processing\n", |
| 137 | + "0:00:51: Job status: processing\n", |
| 138 | + "0:00:58: Job status: processing\n", |
| 139 | + "0:01:05: Job status: processing\n", |
| 140 | + "0:01:13: Job status: success\n", |
| 141 | + "Training of emulator tritium-desorption is complete!\n", |
| 142 | + "\n", |
| 143 | + "Predicting from trained gpu model...\n", |
| 144 | + "Predictions made successfully!\n", |
| 145 | + "\n" |
| 146 | + ] |
| 147 | + } |
| 148 | + ], |
| 149 | + "source": [ |
| 150 | + "# Loop over CPU and GPU to compare training times between the two\n", |
| 151 | + "for processor in [\"cpu\", \"gpu\"]:\n", |
| 152 | + " print(f\"Training model on {processor}\")\n", |
| 153 | + " emulator.train(\n", |
| 154 | + " dataset,\n", |
| 155 | + " inputs,\n", |
| 156 | + " outputs,\n", |
| 157 | + " params=params,\n", |
| 158 | + " verbose=True,\n", |
| 159 | + " processor=processor,\n", |
| 160 | + " )\n", |
| 161 | + " print()\n", |
| 162 | + " print(f\"Predicting from trained {processor} model...\")\n", |
| 163 | + " emulator.predict(df_test, verbose=False)\n", |
| 164 | + " print(\"Predictions made successfully!\")\n", |
| 165 | + " print()" |
| 166 | + ] |
| 167 | + } |
| 168 | + ], |
| 169 | + "metadata": { |
| 170 | + "kernelspec": { |
| 171 | + "display_name": "twinlab-tutorials-VByujxwf-py3.10", |
| 172 | + "language": "python", |
| 173 | + "name": "python3" |
| 174 | + }, |
| 175 | + "language_info": { |
| 176 | + "codemirror_mode": { |
| 177 | + "name": "ipython", |
| 178 | + "version": 3 |
| 179 | + }, |
| 180 | + "file_extension": ".py", |
| 181 | + "mimetype": "text/x-python", |
| 182 | + "name": "python", |
| 183 | + "nbconvert_exporter": "python", |
| 184 | + "pygments_lexer": "ipython3", |
| 185 | + "version": "3.10.15" |
| 186 | + } |
| 187 | + }, |
| 188 | + "nbformat": 4, |
| 189 | + "nbformat_minor": 2 |
| 190 | +} |
0 commit comments