This repository is the official implementation for accepted paper: "Neural Path Features and Neural Path Kernel : Understanding the role of gates in deep learning" in NeurIPS 2020
| Arch | Optimizer | Dataset | FRNPF(II) | FRNPF(DI) | DNFPL | FLNPF | ReLU |
|---|---|---|---|---|---|---|---|
| FC | SGD | MNIST | 95.85±0.10 | 95.85±0.17 | 97.86±0.11 | 97.10±0.09 | 97.85±0.09 |
| FC | Adam | MNIST | 96.02±0.13 | 96.09±0.12 | 98.22±0.05 | 97.82±0.02 | 98.14±0.07 |
| VCONV | SGD | CIFAR-10 | 58.92±0.62 | 58.83±0.27 | 63.21±0.07 | 63.06±0.73 | 67.02±0.43 |
| VCONV | Adam | CIFAR-10 | 64.86±1.18 | 64.68±0.84 | 69.45±0.76 | 71.40±0.47 | 72.43±0.54 |
| GCONV | SGD | CIFAR-10 | 67.36±0.56 | 66.86±0.44 | 74.57±0.43 | 78.52±0.39 | 78.90±0.37 |
| GCONV | Adam | CIFAR-10 | 67.09±0.58 | 67.08±0.27 | 77.12±0.19 | 79.68±0.32 | 80.32±0.35 |
Please cite the paper if it helps you:
@inproceedings{chandra2020npf,
title={Neural Path Features and Neural Path Kernel : Understanding the role of gates in deep learning},
author={Lakshminarayanan, Chandrashekar and Singh, Amit Vikram},
booktitle={Advances in Neural Information Processing Systems(NeurIPS)},
year={2020}
}

