ProFOLD2 - A protein 3D structure prediction application
- Clone this repository and
cdinto it.
$git clone https://github.com/bigict/ProFOLD2.git
$cd ProFOLD2
$git submodule update --init # required if use FusedEvoformer, recommended.- Create a virtual enviroment and install dependencies
$conda create -n profold2 python=3.11
$conda activate profold2
$bash install_env.sh- Train a model
$python main.py train --prefix=OUTPUT_DIRThere are a lot of parameters, you can run
$python main.py train -hfor further help.
ProFOLD2 logs it's metrics to TensorBoard. You can run
$tensorboard --logdir=OUTPUT_DIRThen open http://localhost:6006 in you browser.
- Inference
$python main.py predict --models [MODEL_NAME1:]MODEL_FILE1 [MODEL_NAME2:]MODEL_FILE2Just like train, you can run
$python main.py predict -h