|
| 1 | +import logging.handlers |
| 2 | + |
| 3 | +from ConfigSpace.configuration_space import Configuration |
| 4 | + |
| 5 | +import pytest |
| 6 | + |
| 7 | +import autosklearn.metrics |
| 8 | +from autosklearn.smbo import AutoMLSMBO |
| 9 | +import autosklearn.pipeline.util as putil |
| 10 | +from autosklearn.automl import AutoML |
| 11 | +from autosklearn.constants import BINARY_CLASSIFICATION |
| 12 | +from autosklearn.data.xy_data_manager import XYDataManager |
| 13 | +from autosklearn.util.stopwatch import StopWatch |
| 14 | + |
| 15 | + |
| 16 | +@pytest.mark.parametrize("context", ['fork', 'forkserver']) |
| 17 | +def test_smbo_metalearning_configurations(backend, context, dask_client): |
| 18 | + |
| 19 | + # Get the inputs to the optimizer |
| 20 | + X_train, Y_train, X_test, Y_test = putil.get_dataset('iris') |
| 21 | + config_space = AutoML(backend=backend, |
| 22 | + metric=autosklearn.metrics.accuracy, |
| 23 | + time_left_for_this_task=20, |
| 24 | + per_run_time_limit=5).fit( |
| 25 | + X_train, Y_train, |
| 26 | + task=BINARY_CLASSIFICATION, |
| 27 | + only_return_configuration_space=True) |
| 28 | + watcher = StopWatch() |
| 29 | + |
| 30 | + # Create an optimizer |
| 31 | + smbo = AutoMLSMBO( |
| 32 | + config_space=config_space, |
| 33 | + dataset_name='iris', |
| 34 | + backend=backend, |
| 35 | + total_walltime_limit=10, |
| 36 | + func_eval_time_limit=5, |
| 37 | + memory_limit=4096, |
| 38 | + metric=autosklearn.metrics.accuracy, |
| 39 | + watcher=watcher, |
| 40 | + n_jobs=1, |
| 41 | + dask_client=dask_client, |
| 42 | + port=logging.handlers.DEFAULT_TCP_LOGGING_PORT, |
| 43 | + start_num_run=1, |
| 44 | + data_memory_limit=None, |
| 45 | + num_metalearning_cfgs=25, |
| 46 | + pynisher_context=context, |
| 47 | + ) |
| 48 | + assert smbo.pynisher_context == context |
| 49 | + |
| 50 | + # Create the inputs to metalearning |
| 51 | + datamanager = XYDataManager( |
| 52 | + X_train, Y_train, |
| 53 | + X_test, Y_test, |
| 54 | + task=BINARY_CLASSIFICATION, |
| 55 | + dataset_name='iris', |
| 56 | + feat_type=None, |
| 57 | + ) |
| 58 | + backend.save_datamanager(datamanager) |
| 59 | + smbo.task = BINARY_CLASSIFICATION |
| 60 | + smbo.reset_data_manager() |
| 61 | + metalearning_configurations = smbo.get_metalearning_suggestions() |
| 62 | + |
| 63 | + # We should have 25 metalearning configurations |
| 64 | + assert len(metalearning_configurations) == 25 |
| 65 | + assert [isinstance(config, Configuration) for config in metalearning_configurations] |
0 commit comments