@@ -122,9 +122,11 @@ View the models found by auto-sklearn
122
122
123
123
.. code-block :: none
124
124
125
- rank ensemble_weight type cost duration
126
- model_id
127
- 20 1 1.0 gaussian_process 0.000004 2.687078
125
+ rank ensemble_weight type cost duration
126
+ model_id
127
+ 2 1 0.80 random_forest 0.163676 2.591488
128
+ 11 2 0.08 random_forest 0.369114 2.524188
129
+ 3 3 0.12 k_nearest_neighbors 0.445647 0.475347
128
130
129
131
130
132
@@ -151,7 +153,21 @@ Print the final ensemble constructed by auto-sklearn
151
153
152
154
.. code-block :: none
153
155
154
- [(1.000000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'gaussian_process', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.03525312698553994, 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'True', 'regressor:gaussian_process:alpha': 1.6308437468964296e-06, 'regressor:gaussian_process:thetaL': 2.9247731111629564e-09, 'regressor:gaussian_process:thetaU': 551.0700100096957, 'feature_preprocessor:fast_ica:n_components': 100},
156
+ [(0.800000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0},
157
+ dataset_properties={
158
+ 'task': 5,
159
+ 'sparse': False,
160
+ 'multioutput': True,
161
+ 'target_type': 'regression',
162
+ 'signed': False})),
163
+ (0.120000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'median', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'k_nearest_neighbors', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:k_nearest_neighbors:n_neighbors': 1, 'regressor:k_nearest_neighbors:p': 2, 'regressor:k_nearest_neighbors:weights': 'distance'},
164
+ dataset_properties={
165
+ 'task': 5,
166
+ 'sparse': False,
167
+ 'multioutput': True,
168
+ 'target_type': 'regression',
169
+ 'signed': False})),
170
+ (0.080000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'random_forest', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'regressor:random_forest:bootstrap': 'False', 'regressor:random_forest:criterion': 'friedman_mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 0.9420125003886077, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 2, 'regressor:random_forest:min_samples_split': 9, 'regressor:random_forest:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:fast_ica:n_components': 717},
155
171
dataset_properties={
156
172
'task': 5,
157
173
'sparse': False,
@@ -186,7 +202,7 @@ Get the Score of the final ensemble
186
202
187
203
.. code-block :: none
188
204
189
- R2 score: 0.9999953767477678
205
+ R2 score: 0.8749114684180196
190
206
191
207
192
208
@@ -404,7 +420,7 @@ Get the configuration space
404
420
405
421
.. rst-class :: sphx-glr-timing
406
422
407
- **Total running time of the script: ** ( 2 minutes 7.873 seconds)
423
+ **Total running time of the script: ** ( 1 minutes 59.984 seconds)
408
424
409
425
410
426
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py :
0 commit comments