|  | 
|  | 1 | +------------------------------------------------------------------------ | 
|  | 2 | +-- The Agda standard library | 
|  | 3 | +-- | 
|  | 4 | +-- A standard consequence of accessibility/well-foundedness: | 
|  | 5 | +-- the impossibility of 'infinite descent' from any (accessible) | 
|  | 6 | +-- element x satisfying P to 'smaller' y also satisfying P | 
|  | 7 | +------------------------------------------------------------------------ | 
|  | 8 | + | 
|  | 9 | +{-# OPTIONS --cubical-compatible --safe #-} | 
|  | 10 | + | 
|  | 11 | +module Induction.InfiniteDescent where | 
|  | 12 | + | 
|  | 13 | +open import Data.Nat.Base as ℕ using (ℕ; zero; suc) | 
|  | 14 | +open import Data.Nat.Properties as ℕ | 
|  | 15 | +open import Data.Product.Base using (_,_; proj₁; ∃-syntax; _×_) | 
|  | 16 | +open import Function.Base using (_∘_) | 
|  | 17 | +open import Induction.WellFounded | 
|  | 18 | +  using (WellFounded; Acc; acc; acc-inverse; module Some) | 
|  | 19 | +open import Level using (Level) | 
|  | 20 | +open import Relation.Binary.Core using (Rel) | 
|  | 21 | +open import Relation.Binary.Construct.Closure.Transitive | 
|  | 22 | +open import Relation.Binary.PropositionalEquality.Core | 
|  | 23 | +open import Relation.Nullary.Negation.Core as Negation using (¬_) | 
|  | 24 | +open import Relation.Unary | 
|  | 25 | +  using (Pred; ∁; _∩_; _⊆_;  _⇒_; Universal; IUniversal; Stable; Empty) | 
|  | 26 | + | 
|  | 27 | +private | 
|  | 28 | +  variable | 
|  | 29 | +    a r ℓ : Level | 
|  | 30 | +    A : Set a | 
|  | 31 | +    f : ℕ → A | 
|  | 32 | +    _<_ : Rel A r | 
|  | 33 | +    P : Pred A ℓ | 
|  | 34 | + | 
|  | 35 | +------------------------------------------------------------------------ | 
|  | 36 | +-- Definitions | 
|  | 37 | + | 
|  | 38 | +InfiniteDescendingSequence : Rel A r → (ℕ → A) → Set _ | 
|  | 39 | +InfiniteDescendingSequence _<_ f = ∀ n → f (suc n) < f n | 
|  | 40 | + | 
|  | 41 | +InfiniteDescendingSequenceFrom : Rel A r → (ℕ → A) → Pred A _ | 
|  | 42 | +InfiniteDescendingSequenceFrom _<_ f x = f zero ≡ x × InfiniteDescendingSequence _<_ f | 
|  | 43 | + | 
|  | 44 | +InfiniteDescendingSequence⁺ : Rel A r → (ℕ → A) → Set _ | 
|  | 45 | +InfiniteDescendingSequence⁺ _<_ f = ∀ {m n} → m ℕ.< n → TransClosure _<_ (f n) (f m) | 
|  | 46 | + | 
|  | 47 | +InfiniteDescendingSequenceFrom⁺ : Rel A r → (ℕ → A) → Pred A _ | 
|  | 48 | +InfiniteDescendingSequenceFrom⁺ _<_ f x = f zero ≡ x × InfiniteDescendingSequence⁺ _<_ f | 
|  | 49 | + | 
|  | 50 | +DescentFrom : Rel A r → Pred A ℓ → Pred A _ | 
|  | 51 | +DescentFrom _<_ P x = P x → ∃[ y ] y < x × P y | 
|  | 52 | + | 
|  | 53 | +Descent : Rel A r → Pred A ℓ → Set _ | 
|  | 54 | +Descent _<_ P = ∀ {x} → DescentFrom _<_ P x | 
|  | 55 | + | 
|  | 56 | +InfiniteDescentFrom : Rel A r → Pred A ℓ → Pred A _ | 
|  | 57 | +InfiniteDescentFrom _<_ P x = P x → ∃[ f ] InfiniteDescendingSequenceFrom _<_ f x × ∀ n → P (f n) | 
|  | 58 | + | 
|  | 59 | +InfiniteDescent : Rel A r → Pred A ℓ →  Set _ | 
|  | 60 | +InfiniteDescent _<_ P = ∀ {x} → InfiniteDescentFrom _<_ P x | 
|  | 61 | + | 
|  | 62 | +InfiniteDescentFrom⁺ : Rel A r → Pred A ℓ → Pred A _ | 
|  | 63 | +InfiniteDescentFrom⁺ _<_ P x = P x → ∃[ f ] InfiniteDescendingSequenceFrom⁺ _<_ f x × ∀ n → P (f n) | 
|  | 64 | + | 
|  | 65 | +InfiniteDescent⁺ : Rel A r → Pred A ℓ → Set _ | 
|  | 66 | +InfiniteDescent⁺ _<_ P = ∀ {x} → InfiniteDescentFrom⁺ _<_ P x | 
|  | 67 | + | 
|  | 68 | +NoSmallestCounterExample : Rel A r → Pred A ℓ →  Set _ | 
|  | 69 | +NoSmallestCounterExample _<_ P = ∀ {x} → Acc _<_ x → DescentFrom (TransClosure _<_) (∁ P) x | 
|  | 70 | + | 
|  | 71 | +------------------------------------------------------------------------ | 
|  | 72 | +-- We can swap between transitively closed and non-transitively closed | 
|  | 73 | +-- definitions | 
|  | 74 | + | 
|  | 75 | +sequence⁺ : InfiniteDescendingSequence (TransClosure _<_) f → | 
|  | 76 | +            InfiniteDescendingSequence⁺ _<_ f | 
|  | 77 | +sequence⁺ {_<_ = _<_} {f = f} seq[f] = seq⁺[f]′ ∘ ℕ.<⇒<′ | 
|  | 78 | +  where | 
|  | 79 | +  seq⁺[f]′ : ∀ {m n} → m ℕ.<′ n → TransClosure _<_ (f n) (f m) | 
|  | 80 | +  seq⁺[f]′ ℕ.<′-base        = seq[f] _ | 
|  | 81 | +  seq⁺[f]′ (ℕ.<′-step m<′n) = seq[f] _ ++ seq⁺[f]′ m<′n | 
|  | 82 | + | 
|  | 83 | +sequence⁻ : InfiniteDescendingSequence⁺ _<_ f → | 
|  | 84 | +            InfiniteDescendingSequence (TransClosure _<_) f | 
|  | 85 | +sequence⁻ seq[f] = seq[f] ∘ n<1+n | 
|  | 86 | + | 
|  | 87 | +------------------------------------------------------------------------ | 
|  | 88 | +-- Results about unrestricted descent | 
|  | 89 | + | 
|  | 90 | +module _ (descent : Descent _<_ P) where | 
|  | 91 | + | 
|  | 92 | +  descent∧acc⇒infiniteDescentFrom : (Acc _<_) ⊆ (InfiniteDescentFrom _<_ P) | 
|  | 93 | +  descent∧acc⇒infiniteDescentFrom {x} = | 
|  | 94 | +    Some.wfRec (InfiniteDescentFrom _<_ P) rec x | 
|  | 95 | +    where | 
|  | 96 | +    rec : _ | 
|  | 97 | +    rec y rec[y] py | 
|  | 98 | +      with z , z<y , pz ← descent py | 
|  | 99 | +      with g , (g0≡z , g<P) , Π[P∘g] ← rec[y] z<y pz | 
|  | 100 | +         = h , (h0≡y , h<P) , Π[P∘h] | 
|  | 101 | +      where | 
|  | 102 | +      h : ℕ → _ | 
|  | 103 | +      h zero = y | 
|  | 104 | +      h (suc n) = g n | 
|  | 105 | + | 
|  | 106 | +      h0≡y : h zero ≡ y | 
|  | 107 | +      h0≡y = refl | 
|  | 108 | + | 
|  | 109 | +      h<P : ∀ n → h (suc n) < h n | 
|  | 110 | +      h<P zero rewrite g0≡z = z<y | 
|  | 111 | +      h<P (suc n)           = g<P n | 
|  | 112 | + | 
|  | 113 | +      Π[P∘h] : ∀ n →  P (h n) | 
|  | 114 | +      Π[P∘h] zero rewrite g0≡z = py | 
|  | 115 | +      Π[P∘h] (suc n)           = Π[P∘g] n | 
|  | 116 | + | 
|  | 117 | +  descent∧wf⇒infiniteDescent : WellFounded _<_ → InfiniteDescent _<_ P | 
|  | 118 | +  descent∧wf⇒infiniteDescent wf = descent∧acc⇒infiniteDescentFrom (wf _) | 
|  | 119 | + | 
|  | 120 | +  descent∧acc⇒unsatisfiable : Acc _<_ ⊆ ∁ P | 
|  | 121 | +  descent∧acc⇒unsatisfiable {x} = Some.wfRec (∁ P) rec x | 
|  | 122 | +    where | 
|  | 123 | +    rec : _ | 
|  | 124 | +    rec y rec[y] py = let z , z<y , pz = descent py in rec[y] z<y pz | 
|  | 125 | + | 
|  | 126 | +  descent∧wf⇒empty : WellFounded _<_ → Empty P | 
|  | 127 | +  descent∧wf⇒empty wf x = descent∧acc⇒unsatisfiable (wf x) | 
|  | 128 | + | 
|  | 129 | +------------------------------------------------------------------------ | 
|  | 130 | +-- Results about descent only from accessible elements | 
|  | 131 | + | 
|  | 132 | +module _ (accDescent : Acc _<_ ⊆ DescentFrom _<_ P) where | 
|  | 133 | + | 
|  | 134 | +  private | 
|  | 135 | +    descent∩ : Descent _<_ (P ∩ Acc _<_) | 
|  | 136 | +    descent∩ (px , acc[x]) = | 
|  | 137 | +      let y , y<x , py = accDescent acc[x] px | 
|  | 138 | +      in  y , y<x , py , acc-inverse acc[x] y<x | 
|  | 139 | + | 
|  | 140 | +  accDescent∧acc⇒infiniteDescentFrom : Acc _<_ ⊆ InfiniteDescentFrom _<_ P | 
|  | 141 | +  accDescent∧acc⇒infiniteDescentFrom acc[x] px = | 
|  | 142 | +    let f , sequence[f] , Π[[P∩Acc]∘f] = descent∧acc⇒infiniteDescentFrom descent∩ acc[x] (px , acc[x]) | 
|  | 143 | +    in f , sequence[f] , proj₁ ∘ Π[[P∩Acc]∘f] | 
|  | 144 | + | 
|  | 145 | +  accDescent∧wf⇒infiniteDescent : WellFounded _<_ → InfiniteDescent _<_ P | 
|  | 146 | +  accDescent∧wf⇒infiniteDescent wf = accDescent∧acc⇒infiniteDescentFrom (wf _) | 
|  | 147 | + | 
|  | 148 | +  accDescent∧acc⇒unsatisfiable : Acc _<_ ⊆ ∁ P | 
|  | 149 | +  accDescent∧acc⇒unsatisfiable acc[x] px = descent∧acc⇒unsatisfiable descent∩ acc[x] (px , acc[x]) | 
|  | 150 | + | 
|  | 151 | +  wf⇒empty : WellFounded _<_ → Empty P | 
|  | 152 | +  wf⇒empty wf x = accDescent∧acc⇒unsatisfiable (wf x) | 
|  | 153 | + | 
|  | 154 | +------------------------------------------------------------------------ | 
|  | 155 | +-- Results about transitively-closed descent only from accessible elements | 
|  | 156 | + | 
|  | 157 | +module _ (accDescent⁺ : Acc _<_ ⊆ DescentFrom (TransClosure _<_) P) where | 
|  | 158 | + | 
|  | 159 | +  private | 
|  | 160 | +    descent : Acc (TransClosure _<_) ⊆ DescentFrom (TransClosure _<_) P | 
|  | 161 | +    descent = accDescent⁺  ∘ accessible⁻ _ | 
|  | 162 | + | 
|  | 163 | +  accDescent⁺∧acc⇒infiniteDescentFrom⁺ : Acc _<_ ⊆ InfiniteDescentFrom⁺ _<_ P | 
|  | 164 | +  accDescent⁺∧acc⇒infiniteDescentFrom⁺ acc[x] px | 
|  | 165 | +    with f , (f0≡x , sequence[f]) , Π[P∘f] | 
|  | 166 | +       ← accDescent∧acc⇒infiniteDescentFrom descent (accessible _ acc[x]) px | 
|  | 167 | +       = f , (f0≡x , sequence⁺ sequence[f]) , Π[P∘f] | 
|  | 168 | + | 
|  | 169 | +  accDescent⁺∧wf⇒infiniteDescent⁺ : WellFounded _<_ → InfiniteDescent⁺ _<_ P | 
|  | 170 | +  accDescent⁺∧wf⇒infiniteDescent⁺ wf = accDescent⁺∧acc⇒infiniteDescentFrom⁺ (wf _) | 
|  | 171 | + | 
|  | 172 | +  accDescent⁺∧acc⇒unsatisfiable : Acc _<_ ⊆ ∁ P | 
|  | 173 | +  accDescent⁺∧acc⇒unsatisfiable = accDescent∧acc⇒unsatisfiable descent ∘ accessible _ | 
|  | 174 | + | 
|  | 175 | +  accDescent⁺∧wf⇒empty : WellFounded _<_ → Empty P | 
|  | 176 | +  accDescent⁺∧wf⇒empty = wf⇒empty descent ∘ (wellFounded _) | 
|  | 177 | + | 
|  | 178 | +------------------------------------------------------------------------ | 
|  | 179 | +-- Finally: the (classical) no smallest counterexample principle itself | 
|  | 180 | + | 
|  | 181 | +module _ (stable : Stable P) (noSmallest : NoSmallestCounterExample _<_ P) where | 
|  | 182 | + | 
|  | 183 | +  noSmallestCounterExample∧acc⇒satisfiable : Acc _<_ ⊆ P | 
|  | 184 | +  noSmallestCounterExample∧acc⇒satisfiable = | 
|  | 185 | +    stable _ ∘ accDescent⁺∧acc⇒unsatisfiable noSmallest | 
|  | 186 | + | 
|  | 187 | +  noSmallestCounterExample∧wf⇒universal : WellFounded _<_ → Universal P | 
|  | 188 | +  noSmallestCounterExample∧wf⇒universal wf = | 
|  | 189 | +    stable _ ∘ accDescent⁺∧wf⇒empty noSmallest wf | 
0 commit comments