|
| 1 | +"""Velocity autocorrelation example.""" |
| 2 | + |
| 3 | +# /// script |
| 4 | +# dependencies = [ |
| 5 | +# "ase>=3.24", |
| 6 | +# "matplotlib", |
| 7 | +# "numpy", |
| 8 | +# ] |
| 9 | +# /// |
| 10 | + |
| 11 | +from typing import Any |
| 12 | + |
| 13 | +import matplotlib.pyplot as plt |
| 14 | +import numpy as np |
| 15 | +import torch |
| 16 | +from ase.build import bulk |
| 17 | +from ase.md.velocitydistribution import MaxwellBoltzmannDistribution |
| 18 | + |
| 19 | +import torch_sim as ts |
| 20 | +from torch_sim.models.lennard_jones import LennardJonesModel |
| 21 | +from torch_sim.properties.correlations import VelocityAutoCorrelation |
| 22 | +from torch_sim.units import MetalUnits as Units |
| 23 | + |
| 24 | + |
| 25 | +def prepare_system() -> tuple[ |
| 26 | + Any, Any, torch.Tensor, torch.Tensor, torch.device, torch.dtype, float |
| 27 | +]: |
| 28 | + """Create and prepare Ar system with LJ potential.""" |
| 29 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 30 | + dtype = torch.float64 |
| 31 | + |
| 32 | + # Using solid Ar w/ LJ for ease |
| 33 | + atoms = bulk("Ar", crystalstructure="fcc", a=5.256, cubic=True) |
| 34 | + atoms = atoms.repeat((3, 3, 3)) |
| 35 | + temperature = 50.0 # Kelvin |
| 36 | + MaxwellBoltzmannDistribution(atoms, temperature_K=temperature) |
| 37 | + state = ts.io.atoms_to_state(atoms, device=device, dtype=dtype) |
| 38 | + |
| 39 | + epsilon = 0.0104 # eV |
| 40 | + sigma = 3.4 # Å |
| 41 | + cutoff = 2.5 * sigma |
| 42 | + |
| 43 | + lj_model = LennardJonesModel( |
| 44 | + sigma=sigma, |
| 45 | + epsilon=epsilon, |
| 46 | + cutoff=cutoff, |
| 47 | + device=device, |
| 48 | + dtype=dtype, |
| 49 | + compute_forces=True, |
| 50 | + ) |
| 51 | + |
| 52 | + timestep = 0.001 # ps (1 fs) |
| 53 | + dt = torch.tensor(timestep * Units.time, device=device, dtype=dtype) |
| 54 | + temp_kT = temperature * Units.temperature # Convert K to internal units |
| 55 | + kT = torch.tensor(temp_kT, device=device, dtype=dtype) |
| 56 | + |
| 57 | + return state, lj_model, dt, kT, device, dtype, timestep |
| 58 | + |
| 59 | + |
| 60 | +def plot_results(*, time: np.ndarray, vacf: np.ndarray, window_count: int) -> None: |
| 61 | + """Plot VACF results.""" |
| 62 | + plt.figure(figsize=(10, 8)) |
| 63 | + plt.plot(time, vacf, "b-", linewidth=2) |
| 64 | + plt.xlabel("Time (fs)", fontsize=12) |
| 65 | + plt.ylabel("VACF", fontsize=12) |
| 66 | + plt.title(f"VACF (Average of {window_count} windows)", fontsize=14) |
| 67 | + plt.axhline(y=0, color="k", linestyle="--", alpha=0.3) |
| 68 | + plt.ylim(-0.6, 1.1) |
| 69 | + plt.tight_layout() |
| 70 | + plt.savefig("vacf_example.png") |
| 71 | + |
| 72 | + |
| 73 | +def main() -> None: |
| 74 | + """Run velocity autocorrelation simulation using Lennard-Jones model.""" |
| 75 | + state, lj_model, dt, kT, device, dtype, timestep = prepare_system() |
| 76 | + nve_init, nve_update = ts.integrators.nve(model=lj_model, dt=dt, kT=kT) |
| 77 | + state = nve_init(state) # type: ignore[call-arg] |
| 78 | + |
| 79 | + window_size = 150 # Length of correlation: dt * correlation_dt * window_size |
| 80 | + vacf_calc = VelocityAutoCorrelation( |
| 81 | + window_size=window_size, |
| 82 | + device=device, |
| 83 | + use_running_average=True, |
| 84 | + normalize=True, |
| 85 | + ) |
| 86 | + |
| 87 | + # Sampling freq is controlled by prop_calculators |
| 88 | + trajectory = "vacf_example.h5" |
| 89 | + correlation_dt = 10 # Step delta between correlations |
| 90 | + reporter = ts.TrajectoryReporter( |
| 91 | + trajectory, |
| 92 | + state_frequency=100, |
| 93 | + prop_calculators={correlation_dt: {"vacf": vacf_calc}}, |
| 94 | + ) |
| 95 | + |
| 96 | + num_steps = 15000 # NOTE: short run |
| 97 | + for step in range(num_steps): |
| 98 | + state = nve_update(state) # type: ignore[call-arg] |
| 99 | + reporter.report(state, step) |
| 100 | + |
| 101 | + reporter.close() |
| 102 | + |
| 103 | + # VACF results and plot |
| 104 | + # Timesteps -> Time in fs |
| 105 | + time_steps = np.arange(window_size) |
| 106 | + time = time_steps * correlation_dt * timestep * 1000 |
| 107 | + |
| 108 | + if vacf_calc.vacf is not None: |
| 109 | + plot_results( |
| 110 | + time=time, |
| 111 | + vacf=vacf_calc.vacf.cpu().numpy(), |
| 112 | + # Just for demo purposes |
| 113 | + window_count=vacf_calc._window_count, # noqa: SLF001 |
| 114 | + ) |
| 115 | + |
| 116 | + |
| 117 | +if __name__ == "__main__": |
| 118 | + main() |
0 commit comments