@@ -2904,9 +2904,7 @@ void gc_mark_and_steal(jl_ptls_t ptls)
29042904 jl_gc_markqueue_t * mq = & ptls -> mark_queue ;
29052905 jl_gc_markqueue_t * mq_master = NULL ;
29062906 int master_tid = jl_atomic_load (& gc_master_tid );
2907- if (master_tid == -1 ) {
2908- return ;
2909- }
2907+ assert (master_tid != -1 );
29102908 mq_master = & gc_all_tls_states [master_tid ]-> mark_queue ;
29112909 void * new_obj ;
29122910 jl_gc_chunk_t c ;
@@ -2997,7 +2995,7 @@ size_t gc_count_work_in_queue(jl_ptls_t ptls) JL_NOTSAFEPOINT
29972995 * Correctness argument for the mark-loop termination protocol.
29982996 *
29992997 * Safety properties:
3000- * - No work items shall be in any thread's queues when `gc_mark_loop_barrier ` observes
2998+ * - No work items shall be in any thread's queues when `gc_should_mark ` observes
30012999 * that `gc_n_threads_marking` is zero.
30023000 *
30033001 * - No work item shall be stolen from the master thread (i.e. mutator thread which started
@@ -3008,50 +3006,38 @@ size_t gc_count_work_in_queue(jl_ptls_t ptls) JL_NOTSAFEPOINT
30083006 * and that no work is stolen from us at that point.
30093007 *
30103008 * Proof:
3011- * - Suppose the master thread observes that `gc_n_threads_marking` is zero in
3012- * `gc_mark_loop_barrier` and there is a work item left in one thread's queue at that point.
3013- * Since threads try to steal from all threads' queues, this implies that all threads must
3014- * have tried to steal from the queue which still has a work item left, but failed to do so,
3015- * which violates the semantics of Chase-Lev's work-stealing queue.
3016- *
3017- * - Let E1 be the event "master thread writes -1 to gc_master_tid" and E2 be the event
3018- * "master thread observes that `gc_n_threads_marking` is zero". Since we're using
3019- * sequentially consistent atomics, E1 => E2. Now suppose one thread which is spinning in
3020- * `gc_should_mark` tries to enter the mark-loop after E2. In order to do so, it must
3021- * increment `gc_n_threads_marking` to 1 in an event E3, and then read `gc_master_tid` in an
3022- * event E4. Since we're using sequentially consistent atomics, E3 => E4. Since we observed
3023- * `gc_n_threads_marking` as zero in E2, then E2 => E3, and we conclude E1 => E4, so that
3024- * the thread which is spinning in `gc_should_mark` must observe that `gc_master_tid` is -1
3025- * and therefore won't enter the mark-loop.
3009+ * - If a thread observes that `gc_n_threads_marking` is zero inside `gc_should_mark`, that
3010+ * means that no thread has work on their queue, this is guaranteed because a thread may only exit
3011+ * `gc_mark_and_steal` when its own queue is empty, this information is synchronized by the
3012+ * seq-cst fetch_add to a thread that is in `gc_should_mark`. `gc_queue_observer_lock`
3013+ * guarantees that once `gc_n_threads_marking` reaches zero, no thread will increment it again,
3014+ * because incrementing is only legal from inside the lock. Therefore, no thread will reenter
3015+ * the mark-loop after `gc_n_threads_marking` reaches zero.
30263016 */
30273017
3028- int gc_should_mark (jl_ptls_t ptls )
3018+ int gc_should_mark (void )
30293019{
30303020 int should_mark = 0 ;
3031- int n_threads_marking = jl_atomic_load (& gc_n_threads_marking );
3032- // fast path
3033- if (n_threads_marking == 0 ) {
3034- return 0 ;
3035- }
30363021 uv_mutex_lock (& gc_queue_observer_lock );
30373022 while (1 ) {
3038- int tid = jl_atomic_load (& gc_master_tid );
3039- // fast path
3040- if (tid == -1 ) {
3041- break ;
3042- }
3043- n_threads_marking = jl_atomic_load (& gc_n_threads_marking );
3044- // fast path
3023+ int n_threads_marking = jl_atomic_load (& gc_n_threads_marking );
30453024 if (n_threads_marking == 0 ) {
30463025 break ;
30473026 }
3027+ int tid = jl_atomic_load_relaxed (& gc_master_tid );
3028+ assert (tid != -1 );
30483029 size_t work = gc_count_work_in_queue (gc_all_tls_states [tid ]);
30493030 for (tid = gc_first_tid ; tid < gc_first_tid + jl_n_gcthreads ; tid ++ ) {
3050- work += gc_count_work_in_queue (gc_all_tls_states [tid ]);
3031+ jl_ptls_t ptls2 = gc_all_tls_states [tid ];
3032+ if (ptls2 == NULL ) {
3033+ continue ;
3034+ }
3035+ work += gc_count_work_in_queue (ptls2 );
30513036 }
30523037 // if there is a lot of work left, enter the mark loop
30533038 if (work >= 16 * n_threads_marking ) {
3054- jl_atomic_fetch_add (& gc_n_threads_marking , 1 );
3039+ jl_atomic_fetch_add (& gc_n_threads_marking , 1 ); // A possibility would be to allow a thread that found lots
3040+ // of work to increment this
30553041 should_mark = 1 ;
30563042 break ;
30573043 }
@@ -3063,22 +3049,22 @@ int gc_should_mark(jl_ptls_t ptls)
30633049
30643050void gc_wake_all_for_marking (jl_ptls_t ptls )
30653051{
3066- jl_atomic_store (& gc_master_tid , ptls -> tid );
30673052 uv_mutex_lock (& gc_threads_lock );
3068- jl_atomic_fetch_add (& gc_n_threads_marking , 1 );
30693053 uv_cond_broadcast (& gc_threads_cond );
30703054 uv_mutex_unlock (& gc_threads_lock );
30713055}
30723056
30733057void gc_mark_loop_parallel (jl_ptls_t ptls , int master )
30743058{
30753059 if (master ) {
3060+ jl_atomic_store (& gc_master_tid , ptls -> tid );
3061+ jl_atomic_fetch_add (& gc_n_threads_marking , 1 );
30763062 gc_wake_all_for_marking (ptls );
30773063 gc_mark_and_steal (ptls );
30783064 jl_atomic_fetch_add (& gc_n_threads_marking , -1 );
30793065 }
30803066 while (1 ) {
3081- int should_mark = gc_should_mark (ptls );
3067+ int should_mark = gc_should_mark ();
30823068 if (!should_mark ) {
30833069 break ;
30843070 }
0 commit comments