|
| 1 | +#include <iostream> |
| 2 | +#include <cstdlib> |
| 3 | +#include "check_err.hpp" |
| 4 | +#include "config.hpp" |
| 5 | +#include "device.hpp" |
| 6 | +#include "host_tensor.hpp" |
| 7 | +#include "host_tensor_generator.hpp" |
| 8 | + |
| 9 | +#include "device_tensor.hpp" |
| 10 | +#include "binary_element_wise_operation.hpp" |
| 11 | +#include "device_binary_elementwise.hpp" |
| 12 | + |
| 13 | +using F16 = ck::half_t; |
| 14 | +using F32 = float; |
| 15 | + |
| 16 | +using ABDataType = F16; |
| 17 | +using CDataType = F16; |
| 18 | +using EltwiseComputeDataType = F32; |
| 19 | + |
| 20 | +using Add = ck::tensor_operation::binary_element_wise::Add; |
| 21 | + |
| 22 | +using DeviceElementwiseAddInstance = |
| 23 | + ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType, |
| 24 | + ABDataType, |
| 25 | + CDataType, |
| 26 | + EltwiseComputeDataType, |
| 27 | + Add, |
| 28 | + 3, |
| 29 | + 8, |
| 30 | + 1, |
| 31 | + 8, |
| 32 | + 8>; |
| 33 | + |
| 34 | +template <typename HostTensorA, |
| 35 | + typename HostTensorB, |
| 36 | + typename HostTensorC, |
| 37 | + typename ComputeDataType, |
| 38 | + typename Functor> |
| 39 | +void host_broadcast3D_am_bmnk(HostTensorC& C, |
| 40 | + const HostTensorA& A, |
| 41 | + const HostTensorB& B, |
| 42 | + const std::vector<std::size_t>& shape, |
| 43 | + Functor functor) |
| 44 | +{ |
| 45 | + using ctype = ck::remove_reference_t<decltype(C(0, 0))>; |
| 46 | + |
| 47 | + for(std::size_t m = 0; m < shape[0]; ++m) |
| 48 | + for(std::size_t n = 0; n < shape[1]; ++n) |
| 49 | + for(std::size_t k = 0; k < shape[2]; ++k) |
| 50 | + { |
| 51 | + ComputeDataType a_val = static_cast<ComputeDataType>(A(m)); |
| 52 | + ComputeDataType b_val = static_cast<ComputeDataType>(B(m, n, k)); |
| 53 | + ComputeDataType c_val = 0; |
| 54 | + functor(c_val, a_val, b_val); |
| 55 | + C(m, n, k) = static_cast<ctype>(c_val); |
| 56 | + } |
| 57 | +} |
| 58 | + |
| 59 | +int main() |
| 60 | +{ |
| 61 | + bool do_verification = true; |
| 62 | + bool time_kernel = false; |
| 63 | + |
| 64 | + std::vector<std::size_t> mnk = {4, 16, 32}; |
| 65 | + ck::index_t M = mnk[0]; |
| 66 | + |
| 67 | + Tensor<ABDataType> a_m({M}); |
| 68 | + Tensor<ABDataType> b_m_n_k(mnk); |
| 69 | + Tensor<CDataType> c_m_n_k(mnk); |
| 70 | + |
| 71 | + a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0}); |
| 72 | + b_m_n_k.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0}); |
| 73 | + |
| 74 | + DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace()); |
| 75 | + DeviceMem b_m_n_k_device_buf(sizeof(ABDataType) * b_m_n_k.mDesc.GetElementSpace()); |
| 76 | + DeviceMem c_m_n_k_device_buf(sizeof(CDataType) * c_m_n_k.mDesc.GetElementSpace()); |
| 77 | + |
| 78 | + a_m_device_buf.ToDevice(a_m.mData.data()); |
| 79 | + b_m_n_k_device_buf.ToDevice(b_m_n_k.mData.data()); |
| 80 | + |
| 81 | + auto broadcastAdd = DeviceElementwiseAddInstance{}; |
| 82 | + auto argument = broadcastAdd.MakeArgumentPointer( |
| 83 | + a_m_device_buf.GetDeviceBuffer(), |
| 84 | + b_m_n_k_device_buf.GetDeviceBuffer(), |
| 85 | + c_m_n_k_device_buf.GetDeviceBuffer(), |
| 86 | + std::vector<ck::index_t>{mnk.begin(), mnk.end()}, |
| 87 | + {1, 0, 0}, // broadcast A on second and third dimension |
| 88 | + std::vector<ck::index_t>{b_m_n_k.mDesc.GetStrides().begin(), |
| 89 | + b_m_n_k.mDesc.GetStrides().end()}, |
| 90 | + std::vector<ck::index_t>{c_m_n_k.mDesc.GetStrides().begin(), |
| 91 | + c_m_n_k.mDesc.GetStrides().end()}, |
| 92 | + Add{}); |
| 93 | + |
| 94 | + if(!broadcastAdd.IsSupportedArgument(argument.get())) |
| 95 | + { |
| 96 | + throw std::runtime_error("The runtime parameters seems not supported by the " |
| 97 | + "DeviceBinaryElementwise instance, exiting!"); |
| 98 | + }; |
| 99 | + |
| 100 | + auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer(); |
| 101 | + float ave_time = |
| 102 | + broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel}); |
| 103 | + |
| 104 | + std::cout << "Perf: " << ave_time << " ms" << std::endl; |
| 105 | + |
| 106 | + bool pass = true; |
| 107 | + if(do_verification) |
| 108 | + { |
| 109 | + c_m_n_k_device_buf.FromDevice(c_m_n_k.mData.data()); |
| 110 | + Tensor<CDataType> host_c_m_n_k(mnk); |
| 111 | + |
| 112 | + host_broadcast3D_am_bmnk<Tensor<ABDataType>, |
| 113 | + Tensor<ABDataType>, |
| 114 | + Tensor<CDataType>, |
| 115 | + EltwiseComputeDataType, |
| 116 | + Add>(host_c_m_n_k, a_m, b_m_n_k, mnk, Add{}); |
| 117 | + |
| 118 | + pass &= ck::utils::check_err( |
| 119 | + c_m_n_k.mData, host_c_m_n_k.mData, "Error: Incorrect results c", 1e-3, 1e-3); |
| 120 | + } |
| 121 | + |
| 122 | + return pass ? 0 : 1; |
| 123 | +} |
0 commit comments