diff --git a/quantecon/_lqnash.py b/quantecon/_lqnash.py index 2b2fbbbe..ed32b2dd 100644 --- a/quantecon/_lqnash.py +++ b/quantecon/_lqnash.py @@ -1,10 +1,9 @@ import numpy as np from scipy.linalg import solve -from .util import check_random_state def nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, - beta=1.0, tol=1e-8, max_iter=1000, random_state=None): + beta=1.0, tol=1e-8, max_iter=1000): r""" Compute the limit of a Nash linear quadratic dynamic game. In this problem, player i minimizes @@ -63,11 +62,6 @@ def nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, This is the tolerance level for convergence max_iter : scalar(int), optional(default=1000) This is the maximum number of iteratiosn allowed - random_state : int or np.random.RandomState/Generator, optional - Random seed (integer) or np.random.RandomState or Generator - instance to set the initial state of the random number generator - for reproducibility. If None, a randomly initialized RandomState - is used. Returns ------- @@ -105,13 +99,12 @@ def nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, else: k_2 = B2.shape[1] - random_state = check_random_state(random_state) v1 = np.eye(k_1) v2 = np.eye(k_2) P1 = np.zeros((n, n)) P2 = np.zeros((n, n)) - F1 = random_state.standard_normal((k_1, n)) - F2 = random_state.standard_normal((k_2, n)) + F1 = np.full((k_1, n), np.inf) + F2 = np.full((k_2, n), np.inf) for it in range(max_iter): # update