| 
 | 1 | +#include "common.cuh"  | 
 | 2 | +#include "fattn-common.cuh"  | 
 | 3 | +#include "fattn-tile-f16.cuh"  | 
 | 4 | + | 
 | 5 | +#define FATTN_KQ_STRIDE_TILE_F16 64  | 
 | 6 | + | 
 | 7 | +template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size  | 
 | 8 | +#if !defined(GGML_USE_HIP)  | 
 | 9 | +__launch_bounds__(nwarps*WARP_SIZE, 2)  | 
 | 10 | +#endif // !defined(GGML_USE_HIP)  | 
 | 11 | +static __global__ void flash_attn_tile_ext_f16(  | 
 | 12 | +        const char * __restrict__ Q,  | 
 | 13 | +        const char * __restrict__ K,  | 
 | 14 | +        const char * __restrict__ V,  | 
 | 15 | +        const char * __restrict__ mask,  | 
 | 16 | +        const char * __restrict__ sinks,  | 
 | 17 | +        const int  * __restrict__ KV_max,  | 
 | 18 | +        float      * __restrict__ dst,  | 
 | 19 | +        float2     * __restrict__ dst_meta,  | 
 | 20 | +        const float scale,  | 
 | 21 | +        const float max_bias,  | 
 | 22 | +        const float m0,  | 
 | 23 | +        const float m1,  | 
 | 24 | +        const uint32_t n_head_log2,  | 
 | 25 | +        const float logit_softcap,  | 
 | 26 | +        const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,  | 
 | 27 | +                            const int32_t nb01, const int32_t nb02, const int32_t nb03,  | 
 | 28 | +        const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,  | 
 | 29 | +                            const int32_t nb11, const int32_t nb12, const int64_t nb13,  | 
 | 30 | +                            const int32_t nb21, const int32_t nb22, const int64_t nb23,  | 
 | 31 | +                            const int32_t ne31, const int32_t ne32, const int32_t ne33,  | 
 | 32 | +                            const int32_t nb31, const int32_t nb32, const int64_t nb33) {  | 
 | 33 | +#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)  | 
 | 34 | + | 
 | 35 | +    // Skip unused kernel variants for faster compilation:  | 
 | 36 | +#ifdef FP16_MMA_AVAILABLE  | 
 | 37 | +    NO_DEVICE_CODE;  | 
 | 38 | +    return;  | 
 | 39 | +#endif // FP16_MMA_AVAILABLE  | 
 | 40 | +    if (use_logit_softcap && !(D == 128 || D == 256)) {  | 
 | 41 | +        NO_DEVICE_CODE;  | 
 | 42 | +        return;  | 
 | 43 | +    }  | 
 | 44 | + | 
 | 45 | +    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.  | 
 | 46 | + | 
 | 47 | +    const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.  | 
 | 48 | + | 
 | 49 | +    const int sequence = blockIdx.z / ne02;  | 
 | 50 | +    const int head = blockIdx.z - sequence*ne02;  | 
 | 51 | +    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.  | 
 | 52 | +    const float2 * Q_f2   = (const float2 *) (Q    + nb03* sequence         + nb02* head              + nb01*ic0);  | 
 | 53 | +    const half2  * K_h2   = (const half2  *) (K    + nb13* sequence         + nb12*(head / gqa_ratio));  | 
 | 54 | +    const half2  * V_h2   = (const half2  *) (V    + nb13* sequence         + nb12*(head / gqa_ratio)); // K and V have same shape  | 
 | 55 | +    const half   * maskh  = (const half   *) (mask  + nb33*(sequence % ne33)                          + nb31*ic0);  | 
 | 56 | +    const float  * sinksf = (const float  *) (sinks);  | 
 | 57 | + | 
 | 58 | +    const int stride_KV2 = nb11 / sizeof(half2);  | 
 | 59 | + | 
 | 60 | +    const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);  | 
 | 61 | +    const half  slopeh = __float2half(slopef);  | 
 | 62 | + | 
 | 63 | +    static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");  | 
 | 64 | + | 
 | 65 | +    __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];  | 
 | 66 | +    half2 * KQ2 = (half2 *) KQ;  | 
 | 67 | + | 
 | 68 | +    __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.  | 
 | 69 | + | 
 | 70 | +    half kqmax[ncols/nwarps];  | 
 | 71 | +#pragma unroll  | 
 | 72 | +    for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 73 | +        kqmax[j0/nwarps] = -HALF_MAX_HALF;  | 
 | 74 | +    }  | 
 | 75 | +    half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};  | 
 | 76 | + | 
 | 77 | +    half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};  | 
 | 78 | + | 
 | 79 | +    // Convert Q to half2 and store in registers:  | 
 | 80 | +    __shared__ half2 Q_h2[ncols][D/2];  | 
 | 81 | +#pragma unroll  | 
 | 82 | +    for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 83 | +        const int j = j0 + threadIdx.y;  | 
 | 84 | + | 
 | 85 | +#pragma unroll  | 
 | 86 | +        for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 87 | +            const int i = i0 + threadIdx.x;  | 
 | 88 | + | 
 | 89 | +            const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);  | 
 | 90 | +            Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);  | 
 | 91 | +        }  | 
 | 92 | +    }  | 
 | 93 | + | 
 | 94 | +    __syncthreads();  | 
 | 95 | + | 
 | 96 | +    const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;  | 
 | 97 | +    for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {  | 
 | 98 | +        // Calculate KQ tile and keep track of new maximum KQ values:  | 
 | 99 | + | 
 | 100 | +        half kqmax_new[ncols/nwarps];  | 
 | 101 | +#pragma unroll  | 
 | 102 | +        for (int j = 0; j < ncols/nwarps; ++j) {  | 
 | 103 | +            kqmax_new[j] = kqmax[j];  | 
 | 104 | +        }  | 
 | 105 | + | 
 | 106 | +#pragma unroll  | 
 | 107 | +        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {  | 
 | 108 | +            const int i_KQ = i_KQ_0 + threadIdx.y;  | 
 | 109 | + | 
 | 110 | +#pragma unroll  | 
 | 111 | +            for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {  | 
 | 112 | +                const int k_KQ = k_KQ_0 + threadIdx.x;  | 
 | 113 | + | 
 | 114 | +                KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];  | 
 | 115 | +            }  | 
 | 116 | +        }  | 
 | 117 | + | 
 | 118 | +        __syncthreads();  | 
 | 119 | + | 
 | 120 | +        half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};  | 
 | 121 | + | 
 | 122 | +#pragma unroll  | 
 | 123 | +        for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {  | 
 | 124 | +            half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];  | 
 | 125 | +            half2 Q_k[ncols/nwarps];  | 
 | 126 | + | 
 | 127 | +#pragma unroll  | 
 | 128 | +            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {  | 
 | 129 | +                const int i_KQ = i_KQ_0 + threadIdx.x;  | 
 | 130 | + | 
 | 131 | +                K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];  | 
 | 132 | +            }  | 
 | 133 | +#pragma unroll  | 
 | 134 | +            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {  | 
 | 135 | +                const int j_KQ = j_KQ_0 + threadIdx.y;  | 
 | 136 | + | 
 | 137 | +                Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];  | 
 | 138 | +            }  | 
 | 139 | + | 
 | 140 | +#pragma unroll  | 
 | 141 | +            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {  | 
 | 142 | +#pragma unroll  | 
 | 143 | +                for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {  | 
 | 144 | +                    sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];  | 
 | 145 | +                }  | 
 | 146 | +            }  | 
 | 147 | +        }  | 
 | 148 | + | 
 | 149 | +#pragma unroll  | 
 | 150 | +        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {  | 
 | 151 | +            const int i_KQ = i_KQ_0 + threadIdx.x;  | 
 | 152 | + | 
 | 153 | +#pragma unroll  | 
 | 154 | +            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {  | 
 | 155 | +                const int j_KQ = j_KQ_0 + threadIdx.y;  | 
 | 156 | + | 
 | 157 | +                half sum;  | 
 | 158 | +                if (use_logit_softcap) {  | 
 | 159 | +                    const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);  | 
 | 160 | +                    sum = logit_softcap * tanhf(tmp.x + tmp.y);  | 
 | 161 | +                } else {  | 
 | 162 | +                    sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);  | 
 | 163 | +                }  | 
 | 164 | +                sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);  | 
 | 165 | + | 
 | 166 | +                kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);  | 
 | 167 | + | 
 | 168 | +                KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;  | 
 | 169 | +            }  | 
 | 170 | +        }  | 
 | 171 | + | 
 | 172 | +        __syncthreads();  | 
 | 173 | + | 
 | 174 | +#pragma unroll  | 
 | 175 | +        for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 176 | +            const int j = j0 + threadIdx.y;  | 
 | 177 | + | 
 | 178 | +            kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);  | 
 | 179 | +            const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));  | 
 | 180 | +            kqmax[j0/nwarps] = kqmax_new[j0/nwarps];  | 
 | 181 | + | 
 | 182 | +#pragma unroll  | 
 | 183 | +            for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {  | 
 | 184 | +                const int i = i0 + threadIdx.x;  | 
 | 185 | + | 
 | 186 | +                const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);  | 
 | 187 | +                const half2 val = h2exp(diff);  | 
 | 188 | +                kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;  | 
 | 189 | +                KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;  | 
 | 190 | +            }  | 
 | 191 | + | 
 | 192 | +#pragma unroll  | 
 | 193 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 194 | +                VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;  | 
 | 195 | +            }  | 
 | 196 | +        }  | 
 | 197 | + | 
 | 198 | +        __syncthreads();  | 
 | 199 | + | 
 | 200 | +#pragma unroll  | 
 | 201 | +        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {  | 
 | 202 | +            const int k = k0 + threadIdx.y;  | 
 | 203 | + | 
 | 204 | +#pragma unroll  | 
 | 205 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 206 | +                const int i = i0 + threadIdx.x;  | 
 | 207 | + | 
 | 208 | +                KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];  | 
 | 209 | +            }  | 
 | 210 | +        }  | 
 | 211 | + | 
 | 212 | +        __syncthreads();  | 
 | 213 | + | 
 | 214 | +#pragma unroll  | 
 | 215 | +        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {  | 
 | 216 | +            half2  V_k[(D/2)/WARP_SIZE][2];  | 
 | 217 | +            half2 KQ_k[ncols/nwarps];  | 
 | 218 | + | 
 | 219 | +#pragma unroll  | 
 | 220 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 221 | +                const int i = i0 + threadIdx.x;  | 
 | 222 | + | 
 | 223 | +                V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];  | 
 | 224 | +                V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];  | 
 | 225 | +            }  | 
 | 226 | +#pragma unroll  | 
 | 227 | +            for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 228 | +                const int j = j0 + threadIdx.y;  | 
 | 229 | + | 
 | 230 | +                KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];  | 
 | 231 | +            }  | 
 | 232 | + | 
 | 233 | +#pragma unroll  | 
 | 234 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 235 | +#pragma unroll  | 
 | 236 | +                for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 237 | +                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);  | 
 | 238 | +                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);  | 
 | 239 | +                }  | 
 | 240 | +            }  | 
 | 241 | +        }  | 
 | 242 | + | 
 | 243 | +        __syncthreads();  | 
 | 244 | +    }  | 
 | 245 | + | 
 | 246 | +    //Attention sink: adjust running max and sum once per head  | 
 | 247 | +    if (sinksf && blockIdx.y == 0) {  | 
 | 248 | +        const half sink = __float2half(sinksf[head]);  | 
 | 249 | + | 
 | 250 | +#pragma unroll  | 
 | 251 | +        for (int j0 = 0; j0 < ncols; j0 += nwarps) {  | 
 | 252 | +            half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);  | 
 | 253 | +            kqmax_new_j = warp_reduce_max(kqmax_new_j);  | 
 | 254 | + | 
 | 255 | +            const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j));  | 
 | 256 | +            kqmax[j0/nwarps] = kqmax_new_j;  | 
 | 257 | + | 
 | 258 | +            const half val = hexp(sink - kqmax[j0/nwarps]);  | 
 | 259 | +            kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;  | 
 | 260 | +            if (threadIdx.x == 0) {  | 
 | 261 | +                kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val);  | 
 | 262 | +            }  | 
 | 263 | + | 
 | 264 | +#pragma unroll  | 
 | 265 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {  | 
 | 266 | +                VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;  | 
 | 267 | +            }  | 
 | 268 | +        }  | 
 | 269 | +    }  | 
 | 270 | + | 
 | 271 | +    float2 * dst2 = (float2 *) dst;  | 
 | 272 | + | 
 | 273 | +#pragma unroll  | 
 | 274 | +    for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {  | 
 | 275 | +        const int j_VKQ = j_VKQ_0 + threadIdx.y;  | 
 | 276 | + | 
 | 277 | +        if (ic0 + j_VKQ >= ne01) {  | 
 | 278 | +            return;  | 
 | 279 | +        }  | 
 | 280 | + | 
 | 281 | +        half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);  | 
 | 282 | +        kqsum_j = warp_reduce_sum((float)kqsum_j);  | 
 | 283 | + | 
 | 284 | +        const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;  | 
 | 285 | + | 
 | 286 | +#pragma unroll  | 
 | 287 | +        for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {  | 
 | 288 | +            const int i0 = i00 + threadIdx.x;  | 
 | 289 | + | 
 | 290 | +            half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];  | 
 | 291 | +            if (gridDim.y == 1) {  | 
 | 292 | +                dst_val /= __half2half2(kqsum_j);  | 
 | 293 | +            }  | 
 | 294 | +            dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);  | 
 | 295 | +        }  | 
 | 296 | + | 
 | 297 | +        if (gridDim.y != 1 && threadIdx.x == 0) {  | 
 | 298 | +            dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);  | 
 | 299 | +        }  | 
 | 300 | +    }  | 
 | 301 | +#else  | 
 | 302 | +    GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,  | 
 | 303 | +        max_bias, m0, m1, n_head_log2, logit_softcap,  | 
 | 304 | +        ne00, ne01, ne02, ne03,  | 
 | 305 | +              nb01, nb02, nb03,  | 
 | 306 | +        ne10, ne11, ne12, ne13,  | 
 | 307 | +              nb11, nb12, nb13,  | 
 | 308 | +              nb21, nb22, nb23,  | 
 | 309 | +              ne31, ne32, ne33,  | 
 | 310 | +              nb31, nb32, nb33);  | 
 | 311 | +    NO_DEVICE_CODE;  | 
 | 312 | +#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)  | 
 | 313 | +}  | 
 | 314 | + | 
 | 315 | +template <int cols_per_block, bool use_logit_softcap>  | 
 | 316 | +void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {  | 
 | 317 | +    const ggml_tensor * Q = dst->src[0];  | 
 | 318 | +    switch (Q->ne[0]) {  | 
 | 319 | +        case  64: {  | 
 | 320 | +            constexpr int    D             = 64;  | 
 | 321 | +            constexpr int    nwarps        = 8;  | 
 | 322 | +            constexpr size_t nbytes_shared = 0;  | 
 | 323 | +            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;  | 
 | 324 | +            launch_fattn<D, cols_per_block, 1>  | 
 | 325 | +                (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);  | 
 | 326 | +        } break;  | 
 | 327 | +        case 128: {  | 
 | 328 | +            constexpr int    D             = 128;  | 
 | 329 | +            constexpr int    nwarps        = 8;  | 
 | 330 | +            constexpr size_t nbytes_shared = 0;  | 
 | 331 | +            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;  | 
 | 332 | +            launch_fattn<D, cols_per_block, 1>  | 
 | 333 | +                (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);  | 
 | 334 | +        } break;  | 
 | 335 | +        default: {  | 
 | 336 | +            GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");  | 
 | 337 | +        } break;  | 
 | 338 | +    }  | 
 | 339 | +}  | 
 | 340 | + | 
 | 341 | +void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {  | 
 | 342 | +    const ggml_tensor * KQV = dst;  | 
 | 343 | +    const ggml_tensor * Q   = dst->src[0];  | 
 | 344 | + | 
 | 345 | +    const int32_t precision = KQV->op_params[3];  | 
 | 346 | +    GGML_ASSERT(precision == GGML_PREC_DEFAULT);  | 
 | 347 | + | 
 | 348 | +    float logit_softcap;  | 
 | 349 | +    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));  | 
 | 350 | + | 
 | 351 | +    if (Q->ne[1] <= 16) {  | 
 | 352 | +        constexpr int cols_per_block = 16;  | 
 | 353 | +        if (logit_softcap == 0.0f) {  | 
 | 354 | +            constexpr bool use_logit_softcap = false;  | 
 | 355 | +            launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);  | 
 | 356 | +        } else {  | 
 | 357 | +            constexpr bool use_logit_softcap = true;  | 
 | 358 | +            launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);  | 
 | 359 | +        }  | 
 | 360 | +        return;  | 
 | 361 | +    }  | 
 | 362 | + | 
 | 363 | +    constexpr int cols_per_block = 32;  | 
 | 364 | +    if (logit_softcap == 0.0f) {  | 
 | 365 | +        constexpr bool use_logit_softcap = false;  | 
 | 366 | +        launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);  | 
 | 367 | +    } else {  | 
 | 368 | +        constexpr bool use_logit_softcap = true;  | 
 | 369 | +        launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);  | 
 | 370 | +    }  | 
 | 371 | +}  | 
0 commit comments