You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CONTENTS.md
+1Lines changed: 1 addition & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -46,6 +46,7 @@
46
46
| [**ProxyNCALoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#proxyncaloss) | [No Fuss Distance Metric Learning using Proxies](https://arxiv.org/pdf/1703.07464.pdf)
47
47
| [**RankedListLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#rankedlistloss) | [Ranked List Loss for Deep Metric Learning](https://arxiv.org/abs/1903.03238)
48
48
| [**SignalToNoiseRatioContrastiveLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#signaltonoiseratiocontrastiveloss) | [Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning](http://openaccess.thecvf.com/content_CVPR_2019/papers/Yuan_Signal-To-Noise_Ratio_A_Robust_Distance_Metric_for_Deep_Metric_Learning_CVPR_2019_paper.pdf)
49
+
| [**SmoothAPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#smoothaploss) | [Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval](https://arxiv.org/abs/2007.12163)
49
50
| [**SoftTripleLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#softtripleloss) | [SoftTriple Loss: Deep Metric Learning Without Triplet Sampling](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf)
50
51
| [**SphereFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#spherefaceloss) | [SphereFace: Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/pdf/1704.08063.pdf)
51
52
| [**SubCenterArcFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#subcenterarcfaceloss) | [Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123560715.pdf)
- Improved SubCenterArcFaceLoss and GenericPairLoss.
24
+
- Thank you [ir2718](https://github.com/ir2718), [lucamarini22](https://github.com/lucamarini22), and [marcpaga](https://github.com/marcpaga).
25
+
21
26
**December 11**: v2.8.0
22
27
- Added the [Datasets](https://kevinmusgrave.github.io/pytorch-metric-learning/datasets) module for easy downloading of common datasets:
|[mlopezantequera](https://github.com/mlopezantequera)| - Made the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers) work on any combination of query and reference sets <br/> - Made [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) work with arbitrary label comparisons |
233
234
|[cwkeam](https://github.com/cwkeam)| - [SelfSupervisedLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#selfsupervisedloss) <br/> - [VICRegLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#vicregloss) <br/> - Added mean reciprocal rank accuracy to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) <br/> - BaseLossWrapper|
234
-
|[ir2718](https://github.com/ir2718)| - [ThresholdConsistentMarginLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#thresholdconsistentmarginloss) <br/> - The [Datasets](https://kevinmusgrave.github.io/pytorch-metric-learning/datasets) module |
***temperature**: The desired temperature for scaling the sigmoid function. This is denoted by $\tau$ in the first and second equations.
1110
+
1111
+
1112
+
**Other info**:
1113
+
1114
+
* The loss requires the same number of number of elements for each class in the batch labels. An example of valid labels is: `[1, 1, 2, 2, 3, 3]`. An example of invalid labels is `[1, 1, 1, 2, 2, 3, 3]` because there are `3` elements with the value `1`. This can be achieved by using [`samplers.MPerClassSampler`](samplers.md/#mperclasssampler) and setting the `batch_size` and `m` hyperparameters.
[SoftTriple Loss: Deep Metric Learning Without Triplet Sampling](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf){target=_blank}
0 commit comments