| 
5 | 5 |   - Segmentation  | 
6 | 6 |   hide_frontmatter_title: true  | 
7 | 7 |   hide_menu: true  | 
8 |  | -  image: /tutorials/timeseries.png  | 
 | 8 | +  image: /guide/ml_tutorials/timeseries.png  | 
9 | 9 |   meta_description: Tutorial demonstrating a minimal ML backend that performs time series segmentation in Label Studio.  | 
10 | 10 |   meta_title: Time Series Segmenter for Label Studio  | 
11 | 11 |   order: 35  | 
12 | 12 |   tier: all  | 
13 | 13 |   title: Time Series Segmenter for Label Studio  | 
14 | 14 |   type: guide  | 
15 |  | -  url: /tutorials/timeseries_segmenter.html  | 
 | 15 | +  url: /guide/ml_tutorials/timeseries_segmenter.html  | 
16 | 16 | - categories:  | 
17 | 17 |   - Natural Language Processing  | 
18 | 18 |   - Text Classification  | 
19 | 19 |   - BERT  | 
20 | 20 |   - Hugging Face  | 
21 | 21 |   hide_frontmatter_title: true  | 
22 | 22 |   hide_menu: true  | 
23 |  | -  image: /tutorials/bert.png  | 
 | 23 | +  image: /guide/ml_tutorials/bert.png  | 
24 | 24 |   meta_description: Tutorial on how to use BERT-based text classification with your  | 
25 | 25 |     Label Studio project  | 
26 | 26 |   meta_title: BERT-based text classification  | 
27 | 27 |   order: 35  | 
28 | 28 |   tier: all  | 
29 | 29 |   title: Classify text with a BERT model  | 
30 | 30 |   type: guide  | 
31 |  | -  url: /tutorials/bert_classifier.html  | 
 | 31 | +  url: /guide/ml_tutorials/bert_classifier.html  | 
32 | 32 | - categories:  | 
33 | 33 |   - Computer Vision  | 
34 | 34 |   - Optical Character Recognition  | 
35 | 35 |   - EasyOCR  | 
36 | 36 |   hide_frontmatter_title: true  | 
37 | 37 |   hide_menu: true  | 
38 |  | -  image: /tutorials/easyocr.png  | 
 | 38 | +  image: /guide/ml_tutorials/easyocr.png  | 
39 | 39 |   meta_description: The EasyOCR model connection integrates the capabilities of EasyOCR  | 
40 | 40 |     with Label Studio to assist in machine learning labeling tasks involving Optical  | 
41 | 41 |     Character Recognition (OCR).  | 
 | 
44 | 44 |   tier: all  | 
45 | 45 |   title: Transcribe text from images with EasyOCR  | 
46 | 46 |   type: guide  | 
47 |  | -  url: /tutorials/easyocr.html  | 
 | 47 | +  url: /guide/ml_tutorials/easyocr.html  | 
48 | 48 | - categories:  | 
49 | 49 |   - Natural Language Processing  | 
50 | 50 |   - Named Entity Recognition  | 
51 | 51 |   - Flair  | 
52 | 52 |   hide_frontmatter_title: true  | 
53 | 53 |   hide_menu: true  | 
54 |  | -  image: /tutorials/flair.png  | 
 | 54 | +  image: /guide/ml_tutorials/flair.png  | 
55 | 55 |   meta_description: Tutorial on how to use Label Studio and Flair for faster NER labeling  | 
56 | 56 |   meta_title: Use Flair with Label Studio  | 
57 | 57 |   order: 75  | 
58 | 58 |   tier: all  | 
59 | 59 |   title: NER labeling with Flair  | 
60 | 60 |   type: guide  | 
61 |  | -  url: /tutorials/flair.html  | 
 | 61 | +  url: /guide/ml_tutorials/flair.html  | 
62 | 62 | - categories:  | 
63 | 63 |   - Natural Language Processing  | 
64 | 64 |   - Named Entity Recognition  | 
 | 
67 | 67 |   - Hugging Face  | 
68 | 68 |   hide_frontmatter_title: true  | 
69 | 69 |   hide_menu: true  | 
70 |  | -  image: /tutorials/gliner.png  | 
 | 70 | +  image: /guide/ml_tutorials/gliner.png  | 
71 | 71 |   meta_description: Tutorial on how to use GLiNER with your Label Studio project to  | 
72 | 72 |     complete NER tasks  | 
73 | 73 |   meta_title: Use GLiNER for NER annotation  | 
74 | 74 |   order: 37  | 
75 | 75 |   tier: all  | 
76 | 76 |   title: Use GLiNER for NER annotation  | 
77 | 77 |   type: guide  | 
78 |  | -  url: /tutorials/gliner.html  | 
 | 78 | +  url: /guide/ml_tutorials/gliner.html  | 
79 | 79 | - categories:  | 
80 | 80 |   - Computer Vision  | 
81 | 81 |   - Image Annotation  | 
82 | 82 |   - Object Detection  | 
83 | 83 |   - Grounding DINO  | 
84 | 84 |   hide_frontmatter_title: true  | 
85 | 85 |   hide_menu: true  | 
86 |  | -  image: /tutorials/grounding-dino.png  | 
 | 86 | +  image: /guide/ml_tutorials/grounding-dino.png  | 
87 | 87 |   meta_description: Label Studio tutorial for using Grounding DINO for zero-shot object  | 
88 | 88 |     detection in images  | 
89 | 89 |   meta_title: Image segmentation in Label Studio using a Grounding DINO backend  | 
90 | 90 |   order: 15  | 
91 | 91 |   tier: all  | 
92 | 92 |   title: Zero-shot object detection and image segmentation with Grounding DINO  | 
93 | 93 |   type: guide  | 
94 |  | -  url: /tutorials/grounding_dino.html  | 
 | 94 | +  url: /guide/ml_tutorials/grounding_dino.html  | 
95 | 95 | - categories:  | 
96 | 96 |   - Computer Vision  | 
97 | 97 |   - Image Annotation  | 
 | 
101 | 101 |   - Segment Anything Model  | 
102 | 102 |   hide_frontmatter_title: true  | 
103 | 103 |   hide_menu: true  | 
104 |  | -  image: /tutorials/grounding-sam.png  | 
 | 104 | +  image: /guide/ml_tutorials/grounding-sam.png  | 
105 | 105 |   meta_description: Label Studio tutorial for using Grounding DINO and SAM for zero-shot  | 
106 | 106 |     object detection in images  | 
107 | 107 |   meta_title: Image segmentation in Label Studio using a Grounding DINO backend and  | 
 | 
111 | 111 |   title: Zero-shot object detection and image segmentation with Grounding DINO and  | 
112 | 112 |     SAM  | 
113 | 113 |   type: guide  | 
114 |  | -  url: /tutorials/grounding_sam.html  | 
 | 114 | +  url: /guide/ml_tutorials/grounding_sam.html  | 
115 | 115 | - categories:  | 
116 | 116 |   - Generative AI  | 
117 | 117 |   - Large Language Model  | 
118 | 118 |   - Text Generation  | 
119 | 119 |   - Hugging Face  | 
120 | 120 |   hide_frontmatter_title: true  | 
121 | 121 |   hide_menu: true  | 
122 |  | -  image: /tutorials/hf-llm.png  | 
 | 122 | +  image: /guide/ml_tutorials/hf-llm.png  | 
123 | 123 |   meta_description: This tutorial explains how to run Hugging Face Large Language  | 
124 | 124 |     model backend in Label Studio. Hugging Face Large Language Model Backend is a  | 
125 | 125 |     machine learning backend designed to work with Label Studio, providing a custom  | 
 | 
129 | 129 |   tier: all  | 
130 | 130 |   title: Hugging Face Large Language Model (LLM)  | 
131 | 131 |   type: guide  | 
132 |  | -  url: /tutorials/huggingface_llm.html  | 
 | 132 | +  url: /guide/ml_tutorials/huggingface_llm.html  | 
133 | 133 | - categories:  | 
134 | 134 |   - Natural Language Processing  | 
135 | 135 |   - Named Entity Recognition  | 
136 | 136 |   - Hugging Face  | 
137 | 137 |   hide_frontmatter_title: true  | 
138 | 138 |   hide_menu: true  | 
139 |  | -  image: /tutorials/hf-ner.png  | 
 | 139 | +  image: /guide/ml_tutorials/hf-ner.png  | 
140 | 140 |   meta_description: This tutorial explains how to run a Hugging Face NER backend in  | 
141 | 141 |     Label Studio.  | 
142 | 142 |   meta_title: Label Studio tutorial to run Hugging Face NER backend  | 
143 | 143 |   order: 25  | 
144 | 144 |   tier: all  | 
145 | 145 |   title: Hugging Face NER  | 
146 | 146 |   type: guide  | 
147 |  | -  url: /tutorials/huggingface_ner.html  | 
 | 147 | +  url: /guide/ml_tutorials/huggingface_ner.html  | 
148 | 148 | - categories:  | 
149 | 149 |   - Natural Language Processing  | 
150 | 150 |   - Named Entity Recognition  | 
151 | 151 |   - Interactive matching  | 
152 | 152 |   hide_frontmatter_title: true  | 
153 | 153 |   hide_menu: true  | 
154 |  | -  image: /tutorials/interactive-substring-matching.png  | 
 | 154 | +  image: /guide/ml_tutorials/interactive-substring-matching.png  | 
155 | 155 |   meta_description: Use the interactive substring matching model for labeling NER  | 
156 | 156 |     tasks in Label Studio  | 
157 | 157 |   meta_title: Interactive substring matching for NER tasks  | 
158 | 158 |   order: 30  | 
159 | 159 |   tier: all  | 
160 | 160 |   title: Interactive substring matching for NER tasks  | 
161 | 161 |   type: guide  | 
162 |  | -  url: /tutorials/interactive_substring_matching.html  | 
 | 162 | +  url: /guide/ml_tutorials/interactive_substring_matching.html  | 
163 | 163 | - categories:  | 
164 | 164 |   - Generative AI  | 
165 | 165 |   - Retrieval Augmented Generation  | 
 | 
168 | 168 |   - Langchain  | 
169 | 169 |   hide_frontmatter_title: true  | 
170 | 170 |   hide_menu: true  | 
171 |  | -  image: /tutorials/langchain.png  | 
 | 171 | +  image: /guide/ml_tutorials/langchain.png  | 
172 | 172 |   meta_description: Use Langchain, OpenAI, and Google to generate responses based  | 
173 | 173 |     on Google search results.  | 
174 | 174 |   meta_title: RAG with a Langchain search agent  | 
175 | 175 |   order: 45  | 
176 | 176 |   tier: all  | 
177 | 177 |   title: RAG with a Langchain search agent  | 
178 | 178 |   type: guide  | 
179 |  | -  url: /tutorials/langchain_search_agent.html  | 
 | 179 | +  url: /guide/ml_tutorials/langchain_search_agent.html  | 
180 | 180 | - categories:  | 
181 | 181 |   - Generative AI  | 
182 | 182 |   - Large Language Model  | 
 | 
186 | 186 |   - ChatGPT  | 
187 | 187 |   hide_frontmatter_title: true  | 
188 | 188 |   hide_menu: true  | 
189 |  | -  image: /tutorials/llm-interactive.png  | 
 | 189 | +  image: /guide/ml_tutorials/llm-interactive.png  | 
190 | 190 |   meta_description: Label Studio tutorial for interactive LLM labeling with OpenAI,  | 
191 | 191 |     Azure, or Ollama  | 
192 | 192 |   meta_title: Interactive LLM labeling with OpenAI, Azure, or Ollama  | 
193 | 193 |   order: 5  | 
194 | 194 |   tier: all  | 
195 | 195 |   title: Interactive LLM labeling with GPT  | 
196 | 196 |   type: guide  | 
197 |  | -  url: /tutorials/llm_interactive.html  | 
 | 197 | +  url: /guide/ml_tutorials/llm_interactive.html  | 
198 | 198 | - categories:  | 
199 | 199 |   - Computer Vision  | 
200 | 200 |   - Object Detection  | 
 | 
203 | 203 |   - MMDetection  | 
204 | 204 |   hide_frontmatter_title: true  | 
205 | 205 |   hide_menu: true  | 
206 |  | -  image: /tutorials/openmmlab.png  | 
 | 206 | +  image: /guide/ml_tutorials/openmmlab.png  | 
207 | 207 |   meta_description: This is a tutorial on how to use the example MMDetection model  | 
208 | 208 |     backend with Label Studio for image segmentation tasks.  | 
209 | 209 |   meta_title: Object detection in images with Label Studio and MMDetection  | 
210 | 210 |   order: 65  | 
211 | 211 |   tier: all  | 
212 | 212 |   title: Object detection with bounding boxes using MMDetection  | 
213 | 213 |   type: guide  | 
214 |  | -  url: /tutorials/mmdetection-3.html  | 
 | 214 | +  url: /guide/ml_tutorials/mmdetection-3.html  | 
215 | 215 | - categories:  | 
216 | 216 |   - Audio/Speech Processing  | 
217 | 217 |   - Automatic Speech Recognition  | 
218 | 218 |   - NeMo  | 
219 | 219 |   - NVidia  | 
220 | 220 |   hide_frontmatter_title: true  | 
221 | 221 |   hide_menu: true  | 
222 |  | -  image: /tutorials/nvidia.png  | 
 | 222 | +  image: /guide/ml_tutorials/nvidia.png  | 
223 | 223 |   meta_description: Tutorial on how to use set up Nvidia NeMo to use for ASR tasks  | 
224 | 224 |     in Label Studio  | 
225 | 225 |   meta_title: Automatic Speech Recognition with NeMo  | 
226 | 226 |   order: 60  | 
227 | 227 |   tier: all  | 
228 | 228 |   title: Automatic Speech Recognition with NVidia NeMo  | 
229 | 229 |   type: guide  | 
230 |  | -  url: /tutorials/nemo_asr.html  | 
 | 230 | +  url: /guide/ml_tutorials/nemo_asr.html  | 
231 | 231 | - categories:  | 
232 | 232 |   - Computer Vision  | 
233 | 233 |   - Image Annotation  | 
234 | 234 |   - Object Detection  | 
235 | 235 |   - Segment Anything Model  | 
236 | 236 |   hide_frontmatter_title: true  | 
237 | 237 |   hide_menu: true  | 
238 |  | -  image: /tutorials/sam2-images.png  | 
 | 238 | +  image: /guide/ml_tutorials/sam2-images.png  | 
239 | 239 |   meta_title: Using SAM2 with Label Studio for Image Annotation  | 
240 | 240 |   order: 15  | 
241 | 241 |   tier: all  | 
242 | 242 |   title: SAM2 with Images  | 
243 | 243 |   type: guide  | 
244 |  | -  url: /tutorials/segment_anything_2_image.html  | 
 | 244 | +  url: /guide/ml_tutorials/segment_anything_2_image.html  | 
245 | 245 | - categories:  | 
246 | 246 |   - Computer Vision  | 
247 | 247 |   - Video Annotation  | 
248 | 248 |   - Object Detection  | 
249 | 249 |   - Segment Anything Model  | 
250 | 250 |   hide_frontmatter_title: true  | 
251 | 251 |   hide_menu: true  | 
252 |  | -  image: /tutorials/sam2-video.png  | 
 | 252 | +  image: /guide/ml_tutorials/sam2-video.png  | 
253 | 253 |   meta_title: Using SAM2 with Label Studio for Video Annotation  | 
254 | 254 |   order: 15  | 
255 | 255 |   tier: all  | 
256 | 256 |   title: SAM2 with Videos  | 
257 | 257 |   type: guide  | 
258 |  | -  url: /tutorials/segment_anything_2_video.html  | 
 | 258 | +  url: /guide/ml_tutorials/segment_anything_2_video.html  | 
259 | 259 | - categories:  | 
260 | 260 |   - Computer Vision  | 
261 | 261 |   - Object Detection  | 
 | 
265 | 265 |   - ONNX  | 
266 | 266 |   hide_frontmatter_title: true  | 
267 | 267 |   hide_menu: true  | 
268 |  | -  image: /tutorials/segment-anything.png  | 
 | 268 | +  image: /guide/ml_tutorials/segment-anything.png  | 
269 | 269 |   meta_description: Label Studio tutorial for labeling images with MobileSAM or ONNX  | 
270 | 270 |     SAM.  | 
271 | 271 |   meta_title: Interactive annotation in Label Studio with Segment Anything Model (SAM)  | 
272 | 272 |   order: 10  | 
273 | 273 |   tier: all  | 
274 | 274 |   title: Interactive annotation with Segment Anything Model  | 
275 | 275 |   type: guide  | 
276 |  | -  url: /tutorials/segment_anything_model.html  | 
 | 276 | +  url: /guide/ml_tutorials/segment_anything_model.html  | 
277 | 277 | - categories:  | 
278 | 278 |   - Natural Language Processing  | 
279 | 279 |   - Text Classification  | 
280 | 280 |   - Scikit-learn  | 
281 | 281 |   hide_frontmatter_title: true  | 
282 | 282 |   hide_menu: true  | 
283 |  | -  image: /tutorials/scikit-learn.png  | 
 | 283 | +  image: /guide/ml_tutorials/scikit-learn.png  | 
284 | 284 |   meta_description: Tutorial on how to use an example ML backend for Label Studio  | 
285 | 285 |     with Scikit-learn logistic regression  | 
286 | 286 |   meta_title: Sklearn Text Classifier model for Label Studio  | 
287 | 287 |   order: 50  | 
288 | 288 |   tier: all  | 
289 | 289 |   title: Sklearn Text Classifier model  | 
290 | 290 |   type: guide  | 
291 |  | -  url: /tutorials/sklearn_text_classifier.html  | 
 | 291 | +  url: /guide/ml_tutorials/sklearn_text_classifier.html  | 
292 | 292 | - categories:  | 
293 | 293 |   - Natural Language Processing  | 
294 | 294 |   - Named Entity Recognition  | 
295 | 295 |   - SpaCy  | 
296 | 296 |   hide_frontmatter_title: true  | 
297 | 297 |   hide_menu: true  | 
298 |  | -  image: /tutorials/spacy.png  | 
 | 298 | +  image: /guide/ml_tutorials/spacy.png  | 
299 | 299 |   meta_description: Tutorial on how to use Label Studio and spaCy for faster NER and  | 
300 | 300 |     POS labeling  | 
301 | 301 |   meta_title: Use spaCy models with Label Studio  | 
302 | 302 |   order: 70  | 
303 | 303 |   tier: all  | 
304 | 304 |   title: spaCy models for NER  | 
305 | 305 |   type: guide  | 
306 |  | -  url: /tutorials/spacy.html  | 
 | 306 | +  url: /guide/ml_tutorials/spacy.html  | 
307 | 307 | - categories:  | 
308 | 308 |   - Computer Vision  | 
309 | 309 |   - Optical Character Recognition  | 
310 | 310 |   - Tesseract  | 
311 | 311 |   hide_frontmatter_title: true  | 
312 | 312 |   hide_menu: true  | 
313 |  | -  image: /tutorials/tesseract.png  | 
 | 313 | +  image: /guide/ml_tutorials/tesseract.png  | 
314 | 314 |   meta_description: Tutorial for how to use Label Studio and Tesseract to assist with  | 
315 | 315 |     your OCR projects  | 
316 | 316 |   meta_title: Interactive bounding boxes OCR in Label Studio with a Tesseract backend  | 
317 | 317 |   order: 55  | 
318 | 318 |   tier: all  | 
319 | 319 |   title: Interactive bounding boxes OCR with Tesseract  | 
320 | 320 |   type: guide  | 
321 |  | -  url: /tutorials/tesseract.html  | 
 | 321 | +  url: /guide/ml_tutorials/tesseract.html  | 
322 | 322 | - categories:  | 
323 | 323 |   - Generative AI  | 
324 | 324 |   - Large Language Model  | 
325 | 325 |   - WatsonX  | 
326 | 326 |   hide_frontmatter_title: true  | 
327 | 327 |   hide_menu: true  | 
328 |  | -  image: /tutorials/watsonx.png  | 
 | 328 | +  image: /guide/ml_tutorials/watsonx.png  | 
329 | 329 |   meta_title: Integrate WatsonX with Label Studio  | 
330 | 330 |   order: 15  | 
331 | 331 |   tier: all  | 
332 | 332 |   title: Integrate WatsonX with Label Studio  | 
333 | 333 |   type: guide  | 
334 |  | -  url: /tutorials/watsonx_llm.html  | 
 | 334 | +  url: /guide/ml_tutorials/watsonx_llm.html  | 
335 | 335 | - categories:  | 
336 | 336 |   - Computer Vision  | 
337 | 337 |   - Object Detection  | 
338 | 338 |   - Image Segmentation  | 
339 | 339 |   - YOLO  | 
340 | 340 |   hide_frontmatter_title: true  | 
341 | 341 |   hide_menu: true  | 
342 |  | -  image: /tutorials/yolo.png  | 
 | 342 | +  image: /guide/ml_tutorials/yolo.png  | 
343 | 343 |   meta_description: Tutorial on how to use an example ML backend for Label Studio  | 
344 | 344 |     with YOLO  | 
345 | 345 |   meta_title: YOLO ML Backend for Label Studio  | 
346 | 346 |   order: 50  | 
347 | 347 |   tier: all  | 
348 | 348 |   title: YOLO ML Backend for Label Studio  | 
349 | 349 |   type: guide  | 
350 |  | -  url: /tutorials/yolo.html  | 
 | 350 | +  url: /guide/ml_tutorials/yolo.html  | 
351 | 351 | - categories:  | 
352 | 352 |   - Computer Vision  | 
353 | 353 |   - Video Classification  | 
354 | 354 |   - Temporal Labeling  | 
355 | 355 |   - LSTM  | 
356 | 356 |   hide_frontmatter_title: true  | 
357 | 357 |   hide_menu: true  | 
358 |  | -  image: /tutorials/yolo-video-classification.png  | 
 | 358 | +  image: /guide/ml_tutorials/yolo-video-classification.png  | 
359 | 359 |   meta_description: Tutorial on how to use an example ML backend for Label Studio  | 
360 | 360 |     with TimelineLabels  | 
361 | 361 |   meta_title: TimelineLabels ML Backend for Label Studio  | 
362 | 362 |   order: 51  | 
363 | 363 |   tier: all  | 
364 | 364 |   title: TimelineLabels ML Backend for Label Studio  | 
365 | 365 |   type: guide  | 
366 |  | -  url: /tutorials/yolo_timeline_labels.html  | 
 | 366 | +  url: /guide/ml_tutorials/yolo_timeline_labels.html  | 
367 | 367 | layout: templates  | 
368 | 368 | meta_description: Tutorial documentation for setting up a machine learning model with  | 
369 | 369 |   predictions using PyTorch, GPT2, Sci-kit learn, and other popular frameworks.  | 
 | 
0 commit comments