|  | 
|  | 1 | +import logging | 
|  | 2 | + | 
|  | 3 | +import fedml | 
|  | 4 | +from fedml import FedMLRunner | 
|  | 5 | +from fedml.core import FedMLExecutor, Params, FedMLAlgorithmFlow | 
|  | 6 | + | 
|  | 7 | + | 
|  | 8 | +class Client(FedMLExecutor): | 
|  | 9 | +    def __init__(self, args): | 
|  | 10 | +        self.args = args | 
|  | 11 | +        id = args.rank | 
|  | 12 | +        neighbor_id_list = [0] | 
|  | 13 | +        super().__init__(id, neighbor_id_list) | 
|  | 14 | + | 
|  | 15 | +        self.device = None | 
|  | 16 | +        self.dataset = None | 
|  | 17 | +        self.model = None | 
|  | 18 | + | 
|  | 19 | +    def init(self, device, dataset, model): | 
|  | 20 | +        self.device = device | 
|  | 21 | +        self.dataset = dataset | 
|  | 22 | +        self.model = model | 
|  | 23 | + | 
|  | 24 | +    def local_training(self): | 
|  | 25 | +        logging.info("local_training start") | 
|  | 26 | +        params = self.get_params() | 
|  | 27 | +        model_params = params.get(Params.KEY_MODEL_PARAMS) | 
|  | 28 | +        return params | 
|  | 29 | + | 
|  | 30 | +    def handle_init_global_model(self): | 
|  | 31 | +        received_params = self.get_params() | 
|  | 32 | +        model_params = received_params.get(Params.KEY_MODEL_PARAMS) | 
|  | 33 | + | 
|  | 34 | +        params = Params() | 
|  | 35 | +        params.add(Params.KEY_MODEL_PARAMS, model_params) | 
|  | 36 | +        return params | 
|  | 37 | + | 
|  | 38 | + | 
|  | 39 | +class Server(FedMLExecutor): | 
|  | 40 | +    def __init__(self, args): | 
|  | 41 | +        self.args = args | 
|  | 42 | +        id = args.rank | 
|  | 43 | +        neighbor_id_list = [1, 2] | 
|  | 44 | +        super().__init__(id, neighbor_id_list) | 
|  | 45 | + | 
|  | 46 | +        self.device = None | 
|  | 47 | +        self.dataset = None | 
|  | 48 | +        self.model = None | 
|  | 49 | + | 
|  | 50 | +        self.round_idx = 0 | 
|  | 51 | + | 
|  | 52 | +        self.client_count = 0 | 
|  | 53 | +        self.client_num = 2 | 
|  | 54 | + | 
|  | 55 | +    def init(self, device, dataset, model): | 
|  | 56 | +        self.device = device | 
|  | 57 | +        self.dataset = dataset | 
|  | 58 | +        self.model = model | 
|  | 59 | + | 
|  | 60 | +    def init_global_model(self): | 
|  | 61 | +        logging.info("init_global_model") | 
|  | 62 | +        params = Params() | 
|  | 63 | +        params.add(Params.KEY_MODEL_PARAMS, self.model.state_dict()) | 
|  | 64 | +        return params | 
|  | 65 | + | 
|  | 66 | +    def server_aggregate(self): | 
|  | 67 | +        logging.info("server_aggregate") | 
|  | 68 | +        params = self.get_params() | 
|  | 69 | +        model_params = params.get(Params.KEY_MODEL_PARAMS) | 
|  | 70 | +        # logging.info("value1 = {}".format(value1)) | 
|  | 71 | +        self.round_idx += 1 | 
|  | 72 | +        self.client_count += 1 | 
|  | 73 | +        if self.client_count == self.client_num: | 
|  | 74 | +            self.client_count = 0 | 
|  | 75 | +            params = Params() | 
|  | 76 | +            params.add(Params.KEY_MODEL_PARAMS, model_params) | 
|  | 77 | +            return params | 
|  | 78 | + | 
|  | 79 | +    def final_eval(self): | 
|  | 80 | +        logging.info("final_eval") | 
|  | 81 | + | 
|  | 82 | + | 
|  | 83 | +if __name__ == "__main__": | 
|  | 84 | +    args = fedml.init() | 
|  | 85 | + | 
|  | 86 | +    # init device | 
|  | 87 | +    device = fedml.device.get_device(args) | 
|  | 88 | + | 
|  | 89 | +    # load data | 
|  | 90 | +    dataset, output_dim = fedml.data.load(args) | 
|  | 91 | + | 
|  | 92 | +    # load model | 
|  | 93 | +    model = fedml.model.create(args, output_dim) | 
|  | 94 | + | 
|  | 95 | +    if args.rank == 0: | 
|  | 96 | +        executor = Server(args) | 
|  | 97 | +        executor.init(device, dataset, model) | 
|  | 98 | +    else: | 
|  | 99 | +        executor = Client(args) | 
|  | 100 | +        executor.init(device, dataset, model) | 
|  | 101 | + | 
|  | 102 | +    fedml_alg_flow = FedMLAlgorithmFlow(args, executor) | 
|  | 103 | +    fedml_alg_flow.add_flow("init_global_model", Server.init_global_model) | 
|  | 104 | +    fedml_alg_flow.add_flow("handle_init", Client.handle_init_global_model) | 
|  | 105 | +    for round_idx in range(args.comm_round): | 
|  | 106 | +        fedml_alg_flow.add_flow("local_training", Client.local_training) | 
|  | 107 | +        fedml_alg_flow.add_flow("server_aggregate", Server.server_aggregate) | 
|  | 108 | +    fedml_alg_flow.add_flow("final_eval", Server.final_eval) | 
|  | 109 | +    fedml_alg_flow.build() | 
|  | 110 | + | 
|  | 111 | +    fedml_runner = FedMLRunner(args, device, dataset, model, algorithm_flow=fedml_alg_flow) | 
|  | 112 | +    fedml_runner.run() | 
0 commit comments