|
| 1 | +import os |
| 2 | +import tempfile |
| 3 | +import unittest |
| 4 | + |
| 5 | +from chebifier import PerSmilesPerModelLRUCache |
| 6 | + |
| 7 | +g_cache = PerSmilesPerModelLRUCache(max_size=3) |
| 8 | + |
| 9 | + |
| 10 | +class DummyPredictor: |
| 11 | + def __init__(self, model_name): |
| 12 | + self.model_name = model_name |
| 13 | + |
| 14 | + @g_cache.batch_decorator |
| 15 | + def predict(self, smiles_list: tuple[str]): |
| 16 | + # Simple predictable dummy function for tests |
| 17 | + return [f"{self.model_name}{i}" for i in range(len(smiles_list))] |
| 18 | + |
| 19 | + |
| 20 | +class TestPerSmilesPerModelLRUCache(unittest.TestCase): |
| 21 | + def setUp(self): |
| 22 | + # Create temp file for persistence tests |
| 23 | + self.temp_file = tempfile.NamedTemporaryFile(delete=False) |
| 24 | + self.temp_file.close() |
| 25 | + self.cache = PerSmilesPerModelLRUCache( |
| 26 | + max_size=3, persist_path=self.temp_file.name |
| 27 | + ) |
| 28 | + |
| 29 | + def tearDown(self): |
| 30 | + if os.path.exists(self.temp_file.name): |
| 31 | + os.remove(self.temp_file.name) |
| 32 | + |
| 33 | + def test_cache_miss_and_set_get(self): |
| 34 | + # Initially empty |
| 35 | + self.assertEqual(len(self.cache), 0) |
| 36 | + self.assertIsNone(self.cache.get("CCC", "model1")) |
| 37 | + |
| 38 | + # Set and get |
| 39 | + self.cache.set("CCC", "model1", "result1") |
| 40 | + self.assertEqual(self.cache.get("CCC", "model1"), "result1") |
| 41 | + self.assertEqual(self.cache.hits, 1) |
| 42 | + self.assertEqual(self.cache.misses, 1) # One miss from first get |
| 43 | + |
| 44 | + def test_cache_eviction(self): |
| 45 | + self.cache.set("a", "m", "v1") |
| 46 | + self.cache.set("b", "m", "v2") |
| 47 | + self.cache.set("c", "m", "v3") |
| 48 | + self.assertEqual(len(self.cache), 3) |
| 49 | + # Adding one more triggers eviction of oldest |
| 50 | + self.cache.set("d", "m", "v4") |
| 51 | + self.assertEqual(len(self.cache), 3) |
| 52 | + self.assertIsNone(self.cache.get("a", "m")) # 'a' evicted |
| 53 | + self.assertIsNotNone(self.cache.get("d", "m")) # 'd' present |
| 54 | + |
| 55 | + def test_batch_decorator_hits_and_misses(self): |
| 56 | + predictor = DummyPredictor("modelA") |
| 57 | + predictor2 = DummyPredictor("modelB") |
| 58 | + |
| 59 | + # Clear cache before starting the test |
| 60 | + g_cache.clear() |
| 61 | + |
| 62 | + smiles = ["AAA", "BBB", "CCC", "DDD", "EEE"] |
| 63 | + # First call all misses |
| 64 | + results1 = predictor.predict(smiles) |
| 65 | + results1_model2 = predictor2.predict(smiles) |
| 66 | + |
| 67 | + # all prediction as retrived from actual prediction function and not from cache |
| 68 | + self.assertListEqual( |
| 69 | + results1, ["modelA_P0", "modelA_P1", "modelA_P2", "modelA_P3", "modelA_P4"] |
| 70 | + ) |
| 71 | + self.assertListEqual( |
| 72 | + results1_model2, |
| 73 | + ["modelB_P0", "modelB_P1", "modelB_P2", "modelB_P3", "modelB_P4"], |
| 74 | + ) |
| 75 | + stats_after_first = g_cache.stats() |
| 76 | + self.assertEqual(stats_after_first["misses"], 3) |
| 77 | + |
| 78 | + # cache = {("AAA", "modelA"): "modelA_P0", ("BBB", "modelA"): "modelA_P1", ("CCC", "modelA"): "modelA_P2"} |
| 79 | + # Second call with some hits and some misses |
| 80 | + results2 = predictor.predict(["FFF", "DDD"]) |
| 81 | + # AAA from cache |
| 82 | + # FFF is not in cache, so it predicted, hence it has P0 as its the only one passed to prediction function |
| 83 | + # and dummy predictor returns iterates over the smiles list and return P{idx} corresponding to the index |
| 84 | + self.assertListEqual(results2, ["P3", "P0"]) |
| 85 | + stats_after_second = g_cache.stats() |
| 86 | + self.assertEqual(stats_after_second["hits"], 1) |
| 87 | + self.assertEqual(stats_after_second["misses"], 4) |
| 88 | + |
| 89 | + # cache = {("AAA", "modelA"): "P0", ("BBB", "modelA"): "P1", ("CCC", "modelA"): "P2", |
| 90 | + # ("DDD", "modelA"): "P3", ("EEE", "modelA"): "P4", ("FFF", "modelA"): "P0"} |
| 91 | + |
| 92 | + # Third call with some hits and some misses |
| 93 | + results3 = predictor.predict(["EEE", "GGG", "DDD", "HHH", "BBB", "ZZZ"]) |
| 94 | + # Here, predictions for [EEE, DDD, BBB] are retrived from cache, |
| 95 | + # while [GGG, HHH, ZZZ] are not in cache and hence passe to the prediction function |
| 96 | + self.assertListEqual(results3, ["P4", "P0", "P3", "P0", "P1", "P0"]) |
| 97 | + stats_after_third = g_cache.stats() |
| 98 | + self.assertEqual(stats_after_third["hits"], 1) |
| 99 | + self.assertEqual(stats_after_third["misses"], 4) |
| 100 | + |
| 101 | + def test_persistence_save_and_load(self): |
| 102 | + # Set some values |
| 103 | + self.cache.set("sm1", "modelX", "val1") |
| 104 | + self.cache.set("sm2", "modelX", "val2") |
| 105 | + |
| 106 | + # Save cache to file |
| 107 | + self.cache.save() |
| 108 | + |
| 109 | + # Create new cache instance loading from file |
| 110 | + new_cache = PerSmilesPerModelLRUCache( |
| 111 | + max_size=3, persist_path=self.temp_file.name |
| 112 | + ) |
| 113 | + new_cache.load() |
| 114 | + |
| 115 | + self.assertEqual(new_cache.get("sm1", "modelX"), "val1") |
| 116 | + self.assertEqual(new_cache.get("sm2", "modelX"), "val2") |
| 117 | + |
| 118 | + def test_clear_cache(self): |
| 119 | + self.cache.set("x", "m", "v") |
| 120 | + self.cache.save() |
| 121 | + self.assertTrue(os.path.exists(self.temp_file.name)) |
| 122 | + self.cache.clear() |
| 123 | + self.assertEqual(len(self.cache), 0) |
| 124 | + self.assertFalse(os.path.exists(self.temp_file.name)) |
| 125 | + |
| 126 | + |
| 127 | +if __name__ == "__main__": |
| 128 | + unittest.main() |
0 commit comments