|
| 1 | +import os |
| 2 | +import sys |
| 3 | +from importlib import util, machinery |
| 4 | +import types |
| 5 | +import ctypes |
| 6 | +import urllib.request |
| 7 | +import tempfile |
| 8 | + |
| 9 | +PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
| 10 | +if PROJECT_ROOT not in sys.path: |
| 11 | + sys.path.insert(0, PROJECT_ROOT) |
| 12 | + |
| 13 | +CONST_HINTS = { |
| 14 | + "input" |
| 15 | +} |
| 16 | + |
| 17 | +CTYPE_TO_CUDA = { |
| 18 | + ctypes.c_int: "int", |
| 19 | + ctypes.c_float: "float", |
| 20 | + ctypes.c_double: "double", |
| 21 | + ctypes.c_uint32: "unsigned int", |
| 22 | + ctypes.c_int64: "long long", |
| 23 | + ctypes.c_uint16: "__half", |
| 24 | +} |
| 25 | + |
| 26 | +CTYPE_TO_MOJO = { |
| 27 | + ctypes.c_int: "Int32", |
| 28 | + ctypes.c_float: "Float32", |
| 29 | + ctypes.c_double: "Float64", |
| 30 | + ctypes.c_uint32: "UInt32", |
| 31 | + ctypes.c_int64: "Int64", |
| 32 | + ctypes.c_uint16: "Float16", |
| 33 | +} |
| 34 | + |
| 35 | +CTYPE_TO_TORCH = { |
| 36 | + ctypes.c_int: "int", |
| 37 | + ctypes.c_float: "torch.float32", |
| 38 | + ctypes.c_double: "torch.float64", |
| 39 | + ctypes.c_uint32: "int", |
| 40 | + ctypes.c_int64: "torch.int64", |
| 41 | + ctypes.c_uint16: "torch.float16", |
| 42 | +} |
| 43 | + |
| 44 | +def ctype_to_cuda(ctype, name) -> str: |
| 45 | + if isinstance(ctype, type) and issubclass(ctype, ctypes._Pointer): |
| 46 | + base_type = getattr(ctype, "_type_", None) |
| 47 | + if base_type is None or base_type not in CTYPE_TO_CUDA: |
| 48 | + raise ValueError( |
| 49 | + f"Unsupported pointer base type: {base_type}. " |
| 50 | + "Please extend CTYPE_TO_CUDA mapping." |
| 51 | + ) |
| 52 | + return f"{'const ' if name in CONST_HINTS else ''}{CTYPE_TO_CUDA[base_type]}*" |
| 53 | + |
| 54 | + if ctype not in CTYPE_TO_CUDA: |
| 55 | + raise ValueError( |
| 56 | + f"Unsupported scalar type: {ctype}. " |
| 57 | + "Please extend CTYPE_TO_CUDA mapping." |
| 58 | + ) |
| 59 | + return CTYPE_TO_CUDA[ctype] |
| 60 | + |
| 61 | +def ctype_to_mojo(ctype) -> str: |
| 62 | + if isinstance(ctype, type) and issubclass(ctype, ctypes._Pointer): |
| 63 | + base_type = getattr(ctype, "_type_", None) |
| 64 | + if base_type is None or base_type not in CTYPE_TO_MOJO: |
| 65 | + raise ValueError( |
| 66 | + f"Unsupported pointer base type: {base_type}. " |
| 67 | + "Please extend CTYPE_TO_MOJO mapping." |
| 68 | + ) |
| 69 | + return f"UnsafePointer[{CTYPE_TO_MOJO[base_type]}]" |
| 70 | + |
| 71 | + if ctype not in CTYPE_TO_MOJO: |
| 72 | + raise ValueError( |
| 73 | + f"Unsupported scalar type: {ctype}. " |
| 74 | + "Please extend CTYPE_TO_MOJO mapping." |
| 75 | + ) |
| 76 | + return CTYPE_TO_MOJO[ctype] |
| 77 | + |
| 78 | +def ctype_to_torch(ctype, name) -> str: |
| 79 | + if isinstance(ctype, type) and issubclass(ctype, ctypes._Pointer): |
| 80 | + return f"{name}: torch.Tensor" |
| 81 | + |
| 82 | + if ctype in (ctypes.c_int, ctypes.c_uint32, ctypes.c_int64): |
| 83 | + return f"{name}: int" |
| 84 | + if ctype in (ctypes.c_float, ctypes.c_double): |
| 85 | + return f"{name}: float" |
| 86 | + |
| 87 | + raise ValueError( |
| 88 | + f"Unsupported type {ctype} for PyTorch mapping. " |
| 89 | + "Please extend CTYPE_TO_TORCH mapping." |
| 90 | + ) |
| 91 | + |
| 92 | +def load_module(name: str, path: str): |
| 93 | + spec = util.spec_from_file_location(name, path) |
| 94 | + if spec is None or spec.loader is None: |
| 95 | + raise ImportError(f"Could not load {name} from {path}") |
| 96 | + |
| 97 | + module = util.module_from_spec(spec) |
| 98 | + spec.loader.exec_module(module) |
| 99 | + sys.modules[name] = module |
| 100 | + return module |
| 101 | + |
| 102 | +def load_challenge(challenge_dir: str): |
| 103 | + base_url = "https://api.leetgpu.com/api/v1/core-files/challenge_base.py" |
| 104 | + base_dst = os.path.join(tempfile.gettempdir(), "challenge_base.py") |
| 105 | + urllib.request.urlretrieve(base_url, base_dst) |
| 106 | + |
| 107 | + sys.modules.setdefault("core", types.ModuleType("core")).__path__ = [] |
| 108 | + |
| 109 | + load_module("core.challenge_base", base_dst) |
| 110 | + challenge = load_module("challenge", os.path.join(challenge_dir, "challenge.py")) |
| 111 | + |
| 112 | + return challenge.Challenge() |
| 113 | + |
| 114 | +def generate_starter_cuda(sig, starter_file): |
| 115 | + arg_str = ", ".join(ctype_to_cuda(typ, name) + f" {name}" for name, typ in sig.items()) |
| 116 | + include_half = "#include <cuda_fp16.h>\n" if "__half" in arg_str else "" |
| 117 | + code = f"""#include <cuda_runtime.h> |
| 118 | +{include_half} |
| 119 | +extern "C" void solve({arg_str}) {{ |
| 120 | +
|
| 121 | +}}""" |
| 122 | + with open(starter_file, "w") as f: |
| 123 | + f.write(code) |
| 124 | + |
| 125 | +def generate_starter_mojo(sig, starter_file): |
| 126 | + arg_str = ", ".join(f"{name}: {ctype_to_mojo(typ)}" for name, typ in sig.items()) |
| 127 | + code = f"""from gpu.host import DeviceContext |
| 128 | +from gpu.id import block_dim, block_idx, thread_idx |
| 129 | +from memory import UnsafePointer |
| 130 | +from math import ceildiv |
| 131 | +
|
| 132 | +@export |
| 133 | +def solve({arg_str}): |
| 134 | + pass""" |
| 135 | + |
| 136 | + with open(starter_file, "w") as f: |
| 137 | + f.write(code) |
| 138 | + |
| 139 | +def generate_starter_pytorch(sig, starter_file): |
| 140 | + arg_str = ", ".join(ctype_to_torch(typ, name) for name, typ in sig.items()) |
| 141 | + code = f"""import torch |
| 142 | +
|
| 143 | +def solve({arg_str}): |
| 144 | + pass |
| 145 | +""" |
| 146 | + with open(starter_file, "w") as f: |
| 147 | + f.write(code) |
| 148 | + |
| 149 | +def generate_starter_triton(sig, starter_file): |
| 150 | + def ctype_to_triton(ctype, name): |
| 151 | + if isinstance(ctype, type) and issubclass(ctype, ctypes._Pointer): |
| 152 | + return f"{name}: torch.Tensor" |
| 153 | + if ctype in (ctypes.c_int, ctypes.c_uint32, ctypes.c_int64): |
| 154 | + return f"{name}: int" |
| 155 | + if ctype in (ctypes.c_float, ctypes.c_double): |
| 156 | + return f"{name}: float" |
| 157 | + raise ValueError(f"Unsupported type {ctype} for Triton mapping. Please extend ctype_to_triton mapping.") |
| 158 | + |
| 159 | + arg_str = ", ".join(ctype_to_triton(typ, name) for name, typ in sig.items()) |
| 160 | + code = f"""import torch |
| 161 | +import triton |
| 162 | +import triton.language as tl |
| 163 | +
|
| 164 | +def solve({arg_str}): |
| 165 | + pass |
| 166 | +""" |
| 167 | + with open(starter_file, "w") as f: |
| 168 | + f.write(code) |
| 169 | + |
| 170 | +def main(): |
| 171 | + if len(sys.argv) != 2: |
| 172 | + print("Usage: python scripts/generate_starter_code.py path/to/challenge_dir") |
| 173 | + sys.exit(1) |
| 174 | + |
| 175 | + challenge_dir = sys.argv[1] |
| 176 | + |
| 177 | + if "easy" in (part.lower() for part in os.path.normpath(challenge_dir).split(os.sep)): |
| 178 | + print("Starter code generation script should not be used for 'easy' challenges.") |
| 179 | + sys.exit(1) |
| 180 | + |
| 181 | + starter_dir = os.path.join(challenge_dir, "starter") |
| 182 | + |
| 183 | + try: |
| 184 | + os.makedirs(starter_dir, exist_ok=True) |
| 185 | + except Exception as e: |
| 186 | + print(f"Error creating starter directory: {e}") |
| 187 | + sys.exit(1) |
| 188 | + |
| 189 | + challenge = load_challenge(challenge_dir) |
| 190 | + sig = challenge.get_solve_signature() |
| 191 | + |
| 192 | + generate_starter_cuda(sig, os.path.join(starter_dir, "starter.cu")) |
| 193 | + generate_starter_mojo(sig, os.path.join(starter_dir, "starter.mojo")) |
| 194 | + generate_starter_pytorch(sig, os.path.join(starter_dir, "starter.pytorch.py")) |
| 195 | + generate_starter_triton(sig, os.path.join(starter_dir, "starter.triton.py")) |
| 196 | + |
| 197 | +if __name__ == "__main__": |
| 198 | + main() |
0 commit comments